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1 Introduction

Supersymmetric Chern-Simons (CS) theories in 2+1 dimensions have recently attracted

great interest as theories for multiple M2-branes in various backgrounds. The excitement

was triggered by the independent works of Bagger-Lambert [1] and Gustavsson [2]. A

key role was played by 3-algebras which, at first sight, do not have a usual field theory

structure. Later it was understood that the theory can be recast as an ordinary field

theory [3]. A U(N) × U(N) CS theory at level (k,−k) with bi-fundamental matter fields
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was subsequently proposed by Aharony, Bergman, Jafferis and Maldacena (ABJM) [4] as

a model describing N M2-branes in the C
4/Zk orbifold background. After the proposal of

the ABJM theory, a number of generalisations have been explored [5–17].

In particular, the N = 2 CS theory with a general quiver structure is studied in [18–

20]. It is shown how D-term conditions and the moduli space are modified compared to the

3+1 dimensional N = 1 gauge theory with the same quiver diagram. Brane tilings [22–

26] are convenient tools to establish the relation between 3+1 dimensional gauge theories

and their moduli spaces which are Calabi-Yau 3 folds. As discussed in [20, 21], we can

conveniently use brane tilings1 (with a few modifications from the 3+1 dimensional case)

to study 2+1 dimensional CS theories as well. In this paper, we refer to each gauge theory

by its brane tiling.

An interesting aspect of 2+1 dimensional CS theories on which we focus in this paper

is toric duality. It corresponds to a situation in which one singular Calabi-Yau variety

has more than one quiver gauge theory (which we refer to as a (toric) phase or a model)

that has this manifold as its mesonic moduli space of vacua. Toric dualities have been

studied in detail in the setup of D3-branes at singularities [27–36]. Recently, there has been

progress along this line in the case of M2-branes, e.g. connections between models have

been mentioned in [21, 37] and a number of models have been classified and systematically

studied in [38].

It should be emphasised that all models we study are brane tilings but not the gen-

eral class of quiver gauge theories, since every brane tiling gives rise to a quiver but not

every quiver gives rise to a brane tiling. All known M2-brane theories so far are brane

tiling models.

In this paper, we study supersymmetric CS theories arising from M2-branes probing

various toric Calabi-Yau 4 folds. For each Calabi-Yau variety, we discuss different toric

phases and represent each of them by a brane tiling. We then apply the ‘forward algo-

rithm’ [27] to obtain the toric data of the mesonic moduli space and exhibit the equivalence

between the vacua of different toric phases. The global symmetry of each model can be

found using its toric data (charge matrices and the toric diagram). The global symmetries

of any two toric phases are thus expected to be the same. We subsequently construct the

Hilbert series of the Master space and the mesonic moduli space from which the R-charges

and generators of the mesonic moduli space can be determined. The mesonic Hilbert series,

R-charges and generators are matched between toric phases.

Before discussing the models in detail, we summarise some useful results on the 2+1

dimensional CS theory in section 2.

Note added: during the completion of this work, we became aware of two relevant pa-

pers: One by Amariti, Forcella, Girardello and Mariotti [49], and one by Franco, Klebanov

and Rodriguez-Gomez [50].

1There have also been studies on brane crystals [39–42], which are three-dimensional bipartite graphs, to

establish the relation between 2+1 dimensional gauge theories and their moduli spaces which are Calabi-Yau

4 folds. However, in this paper, we focus only on brane tilings.
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2 A summary of the 2+1 dimensional supersymmetric Chern-Simons

theory

This paper deals with the study of 2+1 dimensional quiver Chern-Simons (CS) theories

with N = 2 supersymmetry (four supercharges). The theories consist of a product of gauge

groups. There are no kinetic terms for the gauge fields but instead there are CS terms.

The matter fields consist of bi-fundamental and adjoint matter. Let the quiver CS theory

have gauge group with G factors, and a total of E fields, we then have the gauge group∏G
a=1 U(Na) and the Lagrangian, written in N = 2 superspace notation:

L = −

∫
d4θ



∑

Xab

X†
abe

−VaXabe
Vb − i

G∑

a=1

ka

1∫

0

dtVaD̄
α(etVaDαe−tVa)




+

∫
d2θW (Xab) + c.c. (2.1)

where a indexes the factors in the gauge group, Xab are the superfields accordingly charged,

Va are the vector multiplets, D is the superspace derivative, W is the superpotential and

ka are the CS levels which are integers; an overall trace is implicit since all the fields are

matrix-valued.

The first and third terms in (2.1) are respectively usual matter and superpotential

terms. It is useful to write the second term, which corresponds to the CS terms, explicitly

in component notation. The 2+1 dimensional N = 2 vector multiplet Va consists of a

gauge field Aa, a scalar field σa, a two-component Dirac spinor χa, and an auxiliary scalar

field Da, all transforming in the adjoint representation of the gauge group U(Na). This

can be viewed as a dimensional reduction of the 3+1 dimensional N = 1 vector multiplet.

In particular, σa arise from the zero modes of the components of the vector fields in the

direction along which we reduce. In component notation, the CS terms, in Wess-Zumino

(WZ) gauge, are given by

SCS =

G∑

a=1

ka

4π

∫
Tr

(
Aa ∧ dAa +

2

3
Aa ∧ Aa ∧ Aa − χ̄aχa + 2Daσa

)
. (2.2)

The vacuum equations. From (2.1), we obtain the following vacuum equations:

∂Xab
W = 0 ,

µa(X) :=
G∑

b=1

XabX
†
ab −

G∑

c=1

X†
caXca + [Xaa,X

†
aa] = 4kaσa ,

σaXab − Xabσb = 0 . (2.3)

The first set of (2.3) are referred to as the F-term equations. The others are in analogy to

the D-term equations of N = 1 gauge theories in 3+1 dimensions, with the last equation

being a new addition. We refer to the space of all solutions for (2.3) as the mesonic

moduli space and denote it as Mmes.
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Parity invariance. The parity operator commutes with the supersymmetry generators.

Since all terms in (2.2) come from the second term of the supersymmetric Lagrangian (2.1),

it follows that all terms in (2.2) transform in the same way under parity. From the first two

terms of (2.2), we see that the gauge fields Aa and the derivative transform in the same

way under parity. Hence, the first two terms in (2.2) (as well as the third term, which is

a Dirac bilinear in 2+1 dimensions) are negative under parity. The fourth term in (2.2)

must be negative under parity. Note that the usual equation of motion of Da tells us that

Da is bilinear in scalars X†
ab and Xab. Since Xab → Xab under parity, Da → Da under

parity. Thus, it follows that σa → −σa under parity. Since ka → −ka, it follows that the

vacuum equations (2.3) are invariant under parity. Below, we shall demonstrate this fact

geometrically using the toric diagram.

Connection to M2-branes. For the rest of the paper, we assume that

• All gauge groups are U(N) with N having the physical interpretation as the number

of M2-branes in the stack on which the gauge theory is living;

• The superpotential W satisfies the toric condition [29]: Each chiral multiplet ap-

pears precisely twice in W . Once with a positive sign and once with a negative sign.

Under such assumptions, the moduli space is conjectured to receive no quantum

corrections due to supersymmetry and due to conformal invariance in the IR.

As a consequence, for N = 1, the space transverse to the single M2-brane is a toric non-

compact Calabi-Yau cone, and it is conjectured to be the mesonic moduli space Mmes

discussed in the previous paragraph. Hence, Mmes is a 4 dimensional toric Calabi-Yau

cone. In which case, we can apply the forward algorithm [27] which takes gauge theory

information (quiver, superpotential and CS levels) as input and gives toric data of the

moduli space as output. We may as well consider the mesonic moduli space for higher N

which, as a result of the first assumption, is simply the N -th symmetric product of the one

for N = 1 case.2 However, we note that the former is no longer toric [45] and the forward

algorithm is not applied. In this paper, we focus only on the case of N = 1.

2.1 The moduli space of abelian theories

The gauge group is simply U(1)G and we henceforth refer to this case as the abelian case.

Conditions on the CS levels. From the second equation of (2.3), since each quiver

field has a start and an end and hence appears precisely twice in the sum, once with a

positive sign and once with a negative sign, it follows that
∑

a

kaσa = 0 . (2.4)

The third equation of (2.3) sets all σa to a single field, say σ. From (2.4), we see that for

σ 6= 0, we must impose the following constraints on the CS levels:

(k1, . . . , kG) 6= 0 ,
G∑

a=1

ka = 0 . (2.5)

2The Hilbert series can be obtained using the plethystic exponential [43–45].
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Note that if the last equality is not satisfied, then σ is identically zero and (2.3) reduces

to the usual vacuum equations for 3+1 dimensional gauge theories. In which case, the

mesonic moduli space is 3 dimensional. Thus, (2.5) are indeed necessary conditions for the

mesonic moduli space to be 4 dimensional, as we require. For simplicity, we also take

gcd({ka}) = 1 (2.6)

so that we do not have to consider orbifold actions on the moduli space. However, it is

easy to generalise to the case of higher gcd({ka}), and several explicit examples are given

in [20, 44].

Baryonic charges. The moduli space Mmes is a symplectic quotient of the space of

solutions to the F-terms prescribed by the first equation modulo the gauge conditions

prescribed by the D-terms. Because of the condition that all ka sum to 0 imposed in (2.5),

there is an overall U(1) (corresponding to the position of the M2-brane) which has to be

factored out. Furthermore, there is another U(1) which must be factored out. This is

because, from the second equation of (2.3), the presence of CS couplings induces Fayet-

Iliopoulos (FI)-like terms on the space of D-terms:

ζa = 4kaσ . (2.7)

We emphasise that these FI-like terms are not the same as the FI parameters for a 3+1

dimensional theory. This is because the latter are parameters in the Lagrangian, whereas

for the former, σ is an auxiliary field - not a parameter. From (2.7), we see that the

vector ζa aligns along a direction set by the CS integers ka. It picks one direction out of

the (G − 1) baryonic directions which are present in the 3+1 dimensional theory.3 This

direction becomes mesonic in the 2+1 dimensional theory and fibres over the Calabi-Yau 3-

fold to give a mesonic moduli space as a Calabi-Yau 4-fold. The remaining (G−2) directions

stay baryonic in the 2+1 dimensional theory. Thus, in summary, there are (G−2) baryonic

charges coming from the D-terms. We emphasise a subtle point here: Although there are

indeed G − 2 baryonic directions coming from the D-terms, this does not imply that all

possible baryonic directions of the particular Calabi-Yau 4-fold are given by these G − 2

directions. It only provides a lower bound. There are at least G−2 such baryonic directions

and a different formulation may give more than this number. Such a situation occurs, for

example, in Phase II of the C ×C theory and Phase II of the D3 theory. Below, we discuss

how to count all baryonic charges using the toric diagram.

The Master space (for N = 1). The Master space, F ♭, is defined to be the space of

solutions of the F-terms [45]. It is a toric variety for the abelian case. It is of the dimension

4 + (G − 2) = G + 2 . The mesonic moduli space can be obtained by imposing D-terms:

Mmes = F ♭//U(1)G−2 . (2.8)

3The reader is reminded from [45] that for a 3+1 dimensional theory, the mesonic moduli space is a

Calabi-Yau 3-fold, and there are (G − 1) baryonic directions.

– 5 –
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Note that the G − 2 baryonic charges are in the null space of the matrix

C =

(
1 1 1 . . . 1

k1 k2 k3 . . . kG

)
. (2.9)

This can be seen as follows. If the charge vector q = (q1, . . . , qG) is in the null space of C,

then C · qt = 0, i.e. the G charges are subject to 2 relations:

G∑

a=1

qa = 0 ,

G∑

a=1

kaqa = 0 . (2.10)

The first equation, which fixes the total charge to be zero, implies that q is perpendicular

to the vector (1, . . . , 1)1×G, and the second equation implies that q is perpendicular to

the direction set by the CS integers (k1, . . . kG) . Since the vectors (1, . . . , 1)1×G and

(k1, . . . kG) are orthogonal due to (2.5), the independent components of q are indeed the

G − 2 baryonic charges.

2.1.1 Brane tilings, perfect matchings, and toric diagrams

Brane tilings. The toric condition, which requires that each field appears exactly twice

with opposite signs, naturally gives rise to a bipartite graph on T 2 which is also known as

a brane tiling. A bipartite graph is a graph consisting of vertices of two colours, say, white

and black, and every edge connects two vertices with different colours. The tiling may also

be drawn on the plane R
2 provided that one keeps in mind the periodicity of the smallest

unit (called the fundamental domain and represented in the red frame in the pictures in

subsequent sections). Each face of the tiling corresponds to a gauge group and each edge

corresponds to a bi-fundamental field. The superpotential can be obtained easily from the

tiling in the way that we shall discuss below. In this subsection, we use indices ℘, ̺, . . . for

nodes, a, b, . . . for faces, and i, j, . . . for edges. The field Φi ≡ Xab transforms under U(1)a
and U(1)b gauge groups corresponding to the two faces a and b sharing the edge i. The

bipartiteness gives rise to a natural orientation of each edge i corresponding to the field

Φi. It is indicated by an arrow crossing the edge from the face a to the face b: In this

paper, we adopt the convention that the arrow ‘circulates’ clockwise around the white node

and counterclockwise around the black nodes. We can therefore uniquely assign the U(1)a
charge dai to the edge i corresponding to the field Φi = Xab as follows:

dai =





+1 for an outgoing arrow from the face a ,

−1 for an incoming arrow to the face a ,

0 if the edge i is not a side of the face a .

(2.11)

We call the G × E matrix d an incidence matrix. We also assign integers ni to the edge i

such that the CS level ka of the gauge group a is given by4

ka =
∑

i

daini . (2.12)

4This way of representing ka is introduced in [20] and is also used in [42].
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Due to bipatiteness of the tiling, we see that the relation
∑

a ka = 0 is satisfied as required.

The superpotential can be written as

W =
∑

℘

sign(℘)
∏

j℘

Φj℘ , (2.13)

where the product is taken over the edges j℘ around the node ℘, and sign(℘) is +1 if ℘ is

a white node5 and −1 if ℘ is a black node.

Brane realisation. As discussed in detail in [42], a brane tiling for the 2+1 dimensional

CS theory can be regarded a D4-NS5 system in Type IIA theory on R
1,7 × T 2. The NS5-

brane fills an R
1,3 subspace of R

1,7 and is on a complex curve on R
2 × T 2 such that the

NS5-brane forms a collection of tiles that wrap the T 2, with the NS brane forming the

edges of the tiles. In the remaining two coordinates on R
1,7 the brane system sits in a

fixed position. The D4-branes span an R
1,2 subspace of R

1,3 and are wrapping the tiles in

the T 2 directions, having boundaries that end on the NS5-brane. The gauge groups are

realised on the D4-branes, giving rise to a U(N) gauge group per N D4-branes that span

the tile. The edges are separating two tiles and open strings stretched between them give

rise to chiral multiplets in bi-fundamental representations. Let A be the gauge field on the

D4-brane, and let φ be the 0-form gauge field on the NS5-brane. This 0-form gauge field

couples to the field strength dA on the boundary of a D4-brane via the usual WZ coupling

φ dA ∧ dA. Integrating by parts, we may write down the boundary term in the D4-brane

action as

Sboundary =
1

2π

∫

∂D4
A ∧ dA ∧ dφ . (2.14)

This induces the CS coupling which is given by

ka =

∮
dφ , (2.15)

where the integration is taken over the boundary of the face a (i.e., along the boundary of

the corresponding D4-brane). The one-form field strength dφ along the edge i can be iden-

tified with the integer ni. Being a field strength it is quantized and therefore ka are integers.

Linear combinations of the edge contributions ni are integers and we therefore expect that

each edge of the tiling gives an integer contribution with the orientation determining the

sign. Thus, (2.15) is indeed equivalent to the relation (2.12).

Kasteleyn matrices. Many important properties of the tiling are governed by the Kaste-

leyn matrix K(x, y, z), which is a weighted, signed adjacency matrix of the graph with (in

our conventions) the rows indexed by the black nodes, and the columns indexed by the

white nodes. The entry K℘̺ of the Kasteleyn matrix is zero if there is no connection

between the black node ℘ and the white node ̺. Otherwise, K℘̺ can be written as

K℘̺(x, y, z) =
∑

{j℘̺}

Φj℘̺z
nj℘̺ wj℘̺(x, y) , (2.16)

5The reader should note the similarity between white nodes and British roundabouts. They both have

a positive effect and you go round them clockwise.
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where j℘̺ represent an edge connecting the black node ℘ to the white node ̺, Φj℘̺ is

the field associated with this edge, and wj℘̺(x, y) is x or y (or x−1 or y−1, depending on

the orientation of the edge) if the edge j℘̺ crosses the fundamental domain [22, 23] and

wj℘̺(x, y) = 1 if it does not. A number of examples are given in subsequent sections.

Perfect matchings. A perfect matching is a subset of edges in the tiling, or equivalently

a subset of elementary fields, that covers each node exactly once. As discussed in [45], the

coherent component of the Master space of a toric quiver theory is generated by perfect

matchings of the associated tiling. We can obtain the perfect matchings from the Kasteleyn

matrix K(x, y, z) as follows: The quiver fields in the α-th term of the permanent6 of the

Kasteleyn matrix are the elements of the α-th perfect matching pα, i.e.

perm K =

c∑

α=1

pα xuαyvαzwα . (2.17)

The coordinates (uα, vα, wα), with α = 1, . . . , c, are points in a 3d toric diagram of the 2+1

dimensional theory. From (2.16), we see that wα is a linear combination of the integers

ni. Indeed, if we set z = 1, we then recover the 2d Newton polygon which gives a 2d toric

diagram of the 3+1 dimensional theory. Note that there is also another way of constructing

the toric diagram; this will be mentioned in a paragraph below. In appendix A, we prove

that the permanent of the Kasteleyn matrix indeed gives rise to coordinates of the points

in the toric diagram.

The perfect matching matrix. We collect the correspondence between the perfect

matchings and the quiver fields in an E × c matrix (where E is the number of quiver fields

and c is the number of perfect matchings) called the perfect matching matrix P . If E = c

(i.e. the fundamental domain contains precisely one pair of black and white nodes), we can

relabel pα so that P becomes an identity matrix. On the other hand, if E 6= c, then the

null space of the matrix P is non-trivial, and there exists a (c−G−2)×c matrix QF whose

rows are basis vectors (which are taken to be orthogonal) of the nullspace of P :

QF = ker(P ) . (2.18)

Therefore, by construction, we find the relation

P · Qt
F = 0 . (2.19)

This matrix equation gives the relations between the perfect matchings pα. Hence, the

coherent component IrrF ♭ of the Master space can be viewed as the space C
c generated by

the perfect matchings modded out by the relations encoded in QF :

IrrF ♭ = C
c//QF . (2.20)

6The permanent is similar to the determinant: the signatures of the permutations are not taken into

account and all terms come with a + sign. One can also use the determinant but then certain signs must

be introduced [22, 23].
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Hence, the matrix QF can be regarded as the charge matrix associated with the F-terms.

The coherent component IrrF ♭ is c − (c − G − 2) = G + 2 dimensional, as expected. Note

that the sum of entries in each row of QF vanishes. This is equivalent to saying that

(1, 1, . . . , 1)1×G is in the null space of QF , or in other words, is spanned by the row vectors of

P t (see (2.19)). It can be seen that the sum of all rows of P t is proportional to (1, . . . , 1)1×G,

and hence the statement in the previous sentence follows.

Baryonic charges of perfect matchings. Let us determine the baryonic charges of

the perfect matchings. In order to do so, we remind the reader of the definition (2.11) of

the incidence matrix d, which maps the fields into their quiver charges. Furthermore, we

recall the definition of the perfect matching matrix P , which maps the perfect matchings

to the fields. Let Q̃ be a G × c matrix which maps the perfect matchings into their quiver

charges. Then,

dG×E = Q̃G×c · (P
t)c×E , (2.21)

where the subscripts denote the sizes of matrices. Recall that the G − 2 baryonic charges

are in the null space of C given by (2.9). We can define a (G − 2) × G matrix ker(C)

whose rows are orthogonal basis vectors of the null space of C. This matrix projects the

space of quiver charges onto the null space of C. Hence, the baryonic charges of the perfect

matching are given by the (G − 2) × c matrix:

(QD)(G−2)×c = ker (C)(G−2)×G · Q̃G×c . (2.22)

In analogy to QF , the mesonic moduli space can be written as

Mmes = IrrF ♭//QD = (Cc//QF ) //QD . (2.23)

The matrix QD can be regarded as the charge matrix associated with the D-terms. Note

that the sum of entries in each row of QD vanishes, since (1, 1, . . . , 1)1×G is in the null space

of ker(C) as discussed in the comment below (2.9). If the number of perfect matchings

c is equal to the number of quiver fields E (i.e. there is precisely one pair of black and

white nodes in the fundamental domain), then P can be arranged to be the identity matrix

and hence

(QD)(G−2)×c = ker (C)(G−2)×G · dG×E (for c = E) . (2.24)

The toric diagram. There are 2 methods of constructing the toric diagram:

• The first method was mentioned in the preceding paragraph. In particular, the

coordinates (uα, vα, wα) of the α-th point in the toric diagram are respectively given

by the power of x, y, z in (2.17).

• The second method is to make use of the charge matrices QF and QD via (2.23). We

construct a (c − 4) × c matrix Qt as follows:

(Qt)(c−4)×c =

(
(QD)(G−2)×c

(QF )(c−G−2)×c

)
. (2.25)
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Then, let us define a 4 × c matrix

Gt = ker(Qt) (2.26)

whose rows are basis vectors of the null space of Qt. The matrix Gt projects the

space of perfect matchings onto the null space of Qt. Note that columns of length

4 of Gt signify a 4-fold. Since (1, . . . , 1)1×G lives in both the null spaces of QF and

QD, it follows that we can always pick a row of Gt to be (1, . . . , 1)1×G. This implies

that the end points of these c 4-vectors lie in a 3 dimensional hyperplane. Therefore,

we may remove the first row of Gt and obtain a 3× c matrix G′
t. The columns of G′

t

give the coordinates of points in the toric diagram, which represent the toric 4-fold

by an integer polytope in 3 dimensions.

We emphasise that the 3d toric diagram is defined up to a GL(3, Z) transformation. Below

we demonstrate for every toric phase that two methods indeed give the same toric diagram

up to such a transformation.

The mesonic symmetries. In the context of the AdS/CFT correspondence, N = 2

superconformal gauge theories in 2+1 dimensions are dual to M-theory on AdS4 × SE7

(where SE7 denotes a Sasaki-Einstein 7-manifold). There are 4 global U(1) symmetries

which come from the metric and are isometries of the Sasaki-Einstein 7-manifold. The

toric condition implies that the isometry group is U(1)4 or an enhancement of U(1)4 to

a non-abelian group. This isometry group is called the mesonic symmetry and can be

determined by the Qt matrix. In particular, the existence of a non-abelian SU(k) factor

(with k > 1) in the mesonic symmetry is implied by the number k of repetitions of columns

in the Qt matrix. Since the mesonic symmetry has a total rank 4, we can classify all possible

mesonic symmetries according to the partitions of 4 as follows:

• SU(4) × U(1) ,

• SU(3) × SU(2) × U(1) ,

• SU(3) × U(1) × U(1) ,

• SU(2) × SU(2) × SU(2) × U(1) ,

• SU(2) × SU(2) × U(1) × U(1) ,

• SU(2) × U(1) × U(1) × U(1) ,

• U(1) × U(1) × U(1) × U(1) .

If it turns out that there is precisely one U(1) factor in the mesonic symmetry, we can

immediately identify it with the R-charge. Otherwise, there is a minimisation problem to

be solved in order to determine which linear combination of these U(1) charges gives the

right R-charge in the IR [21]. In some simple cases, we can bypass this calculation using a

symmetry argument.

– 10 –



J
H
E
P
0
6
(
2
0
0
9
)
0
2
5

The baryonic symmetries. Each external point in the toric diagram corresponds to

a 5-cycle in the Sasaki-Einstein 7-manifold. Not all of these 5-cycles are homologically

independent but one can choose a basis of homologically stable 5-cycles inside the Sasaki-

Einstein 7-manifold. Every 5-cycle in this basis gives rise to a massless gauge field in AdS4,

coming from Kaluza-Klein reduction of the M-theory 6-form (dual to the 3-form) on the

5-cycle. These massless gauge fields are dual to the baryonic U(1) symmetries in the

gauge theory. The number of such homologically stable 5-cycles, which is thus equal to the

number of baryonic charges N(B), is equal to the number of external points N(E ) in the

toric diagram minus 4:

N(B) = N(E ) − 4 . (2.27)

The global symmetry of the theory is a product of mesonic and baryonic symmetries.

Parity invariance of the Calabi-Yau 4-fold. We mention above that the vacuum

equations and the mesonic moduli space are invariant under parity. This fact can also be

seen from the toric diagram perspective as follows. Since under a parity transformation

ka → −ka, it follows from (2.12) that ni → −ni (the dai do not change sign as we are

not dealing with charge conjugation). It follows from the discussion after (2.17) that, for

each point in the toric diagram, the third coordinate wα → −wα, whereas the first and

second coordinates uα, vα remain unchanged. This is however a GL(3, Z) action on the

coordinates. We thus arrive at our conclusion.

A summary of the forward algorithm. We summarise the forward algorithm in the

following diagram (as in [38]):

INPUT 1:

Quiver
→ dG×E → (QD)(G−2)×c = ker (C)(G−2)×G · Q̃G×c

(dG×E = Q̃G×c · (P
t)c×E)

րINPUT 2:

CS Levels
→ C2×G

ր

INPUT 3:

Superpotential
→ PE×c → (QF )(c−G−2)×c = ker(P )

↓

(Qt)(c−4)×c =

(
(QD)(G−2)×c

(QF )(c−G−2)×c

)
→

OUTPUT:

(Gt)4×c = ker(Qt)

(2.28)

Notation and nomenclature. We denote the i-th bi-fundamental field transforming in

the fundamental (antifundamental) representation of the gauge group a (gauge group b) by

Xi
ab and similarly φi

a denotes the i-th adjoint field in the gauge group a (when there is only

a single arrow the i-index is dropped). We refer to gauge theories in subsequent sections

by their mesonic moduli space (e.g., the C
4 theory), and in each subsection we name toric
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Shorthand notation Object referred to

C chessboard

Dn n double bonds

Hn n hexagons

Sn n squares

∂n n diagonals

On n octogons

Table 1. Shorthand notation for the nomenclature of the brane tilings used in paper.

phases according to the features of their tilings (e.g., Phase I of the C
4 theory is called

the ‘chessboard model’ as its tiling is similar to the chessboard). We use the shorthand

notation listed in table 1 for our nomenclature, e.g. the two double-bonded one-hexagon

model is denoted by D2H1.

3 Phases of the C4 theory

It was shown in [21, 37, 38] that there are two different gauge theories which have C
4 as

a mesonic moduli space. We recall the first, more discussed one and then move over to

the much less discussed theory. Since the two gauge theories have the same moduli space,

we may test their correspondence on a deeper level - compare gauge invariant operators,

compare scaling dimensions, and check if they are indeed dual to each other. This is the

subject of the following subsections.

3.1 Phase I: the chessboard model (the ABJM theory)

The chessboard model (which we shall refer to as C ) contains two gauge groups U(N)1 ×

U(N)2 and bi-fundamental fields Xi
12 and Xi

21 (with i = 1, 2). The superpotential is

given by

W = Tr(X1
12X

1
21X

2
12X

2
21 − X1

12X
2
21X

2
12X

1
21) . (3.1)

According to (2.5), we take the Chern-Simons levels to be k1 = −k2 = 1. The quiver

diagram and tiling are drawn in figure 1. In 3+1 dimensions, the chessboard tiling actually

gives rise to the conifold theory (which we shall refer to as C); however, for the 2+1

dimensional theory, there is an additional structure, namely each edge in the tiling bears an

integer ni according to (2.12). In the following paragraph, we see that the mesonic moduli

space of the 2+1 dimensional chessboard model indeed differs from the mesonic moduli

space of the 3+1 dimensional conifold theory but still coincides with its master space.

The toric diagram. We demonstrate two methods of constructing the toric diagram.

• The Kasteleyn matrix. We assign the integers ni to the edges according to figure 2.

From (2.12), we find that

Gauge group 1 : k1 = 1 = n1 − n2 + n3 − n4 ,

Gauge group 2 : k2 = −1 = −n1 + n2 − n3 + n4 . (3.2)
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Figure 1. [Phase I of C4] (i) Quiver diagram for the C model. (ii) Tiling for the C model.

Figure 2. [Phase I of C4] The fundamental domain of the tiling for the C model: Assignments of

the integers ni to the edges are shown in blue and the weights for these edges are shown in green.

We choose

n3 = 1, n1 = n2 = n4 = 0 . (3.3)

We can now determine the Kasteleyn matrix for this phase of the theory. Since the

fundamental domain contains only one white node and one black node, the Kasteleyn

matrix is 1 × 1 and, therefore, coincides with its permanent:

K = X1
12z

n1 + X1
21x

−1zn2 + X2
12x

−1y−1zn3 + X2
21y

−1zn4

= X1
12 + X1

21x
−1 + X2

12x
−1y−1z + X2

21y
−1 (for n3 = 1, n1 = n2 = n4 = 0) .

(3.4)
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Figure 3. The toric diagram of the C
4 theory.

The powers of x, y, z in each term of (3.4) give the coordinates of each point in the

toric diagram. We collect these points in the columns of the following GK matrix:

GK =




−1 0 −1 0

0 −1 −1 0

0 0 1 0


 . (3.5)

• The charge matrices. From (3.4), the perfect matchings can therefore be taken as

p1 = X1
12, p2 = X2

12, p3 = X2
21, p4 = X1

21 . (3.6)

Since there is a one-to-one correspondence between the perfect matchings and the

quiver fields, QF = 0. Since the number of gauge groups is G = 2, there is G− 2 = 0

baryonic charge from the D-terms and hence QD = 0. Thus, we have Qt = 0. From

(2.26), we find that Gt =

0

B

B

B

@

1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

1

C

C

C

A

. After removing the first row, the columns give

the coordinates of points in the toric diagram:

G′
t =




1 0 0 0

0 1 0 0

0 0 1 0


 . (3.7)

We see that the toric diagram is merely 4 corners of a tetrahedron (figure 3). This is

in fact the toric diagram of C
4 [21, 38].

Note that the toric diagrams constructed from GK and G′
t are the same up to a transfor-

mation T =

0

B

@

−1 0 −1

0 −1 −1

0 0 1

1

C

A
∈ GL(3, Z), where we have GK = T · G′

t.

The moduli space. For the abelian case, the fields are simply complex numbers and so

the superpotential vanishes. Therefore, the Master space is F ♭
C

= C
4. From figure 3, there

are 4 external points in the toric diagram. It follows that the number of baryonic charges

is 4 − 4 = 0, and hence the mesonic moduli space coincides with the Master space:

Mmes
C = F ♭

C = C
4 . (3.8)

– 14 –



J
H
E
P
0
6
(
2
0
0
9
)
0
2
5

Figure 4. The lattice of generators of the C
4 theory.

Since all four columns of the Qt matrix are the same, the mesonic symmetry of this model

is SU(4)×U(1). Note that this U(1) is not the full R-symmetry, which is actually Spin(8).

However, since it assigns equal weight to all fields, it can be identified with the scaling

dimension 1/2. The four fields transform as the fundamental representation of the SU(4).

The Hilbert series is given by

gmes
1 (t, x1, x2, x3;C ) =

1

(1 − tx1)
(
1 − tx2

x1

)(
1 − tx3

x2

)(
1 − t

x3

) =

∞∑

k=0

[k, 0, 0]tk , (3.9)

where t is the fugacity counting scaling dimensions and x1, x2 and x3 are fugacities for the

SU(4) weights. Let us compute the plethystic logarithm of the Hilbert series:

PL[gmes
1 (t, x1, x2, x3;C )] = t

(
x1 +

x2

x1
+

x3

x2
+

1

x3

)
= [1, 0, 0]t . (3.10)

The generators. We can see that the mesonic moduli space is generated by

four operators:

X1
12, X2

12, X1
21, X2

21 .

We can represent these generators in a lattice (figure 4) by plotting the powers of x1, x2, x3

of the character in (3.10). Note that the lattice of generators is the dual of the toric diagram

(nodes are dual to faces and edges are dual to edges). For the C
4 theory, the toric diagram

is a tetrahedron (4 nodes, 6 edges and 4 faces), which is a self-dual lattice. Therefore, the

lattice of generators is the same as the toric diagram.

The 2+1 dimensional chessboard model C v.s. the 3+1 dimensional conifold

theory C. The Master space of the 3+1 dimensional conifold theory (see [45]) coincides

with the Master space of the 2+1 dimensional chessboard model (see (3.8)):

F ♭
C = F ♭

C = C
4 . (3.11)

However, the mesonic moduli spaces of these two theories are different. The space Mmes
C

of the conifold theory is a Calabi-Yau 3-fold whose affine coordinates are given by a hyper-

surface {xy − wz = 0} ⊂ C
4. The Hilbert series is given by

gmes
1 (t; C) =

1 − t2

(1 − t)4
=

1 + t

(1 − t)3
. (3.12)

On the other hand, according to (3.8), the space Mmes
C

of the 2+1 dimensional chessboard

theory is simply C
4.
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Figure 5. [Phase II of C4] (i) Quiver diagram for the D1H1 model. (ii) Tiling for the D1H1

model.

Figure 6. [Phase II of C4] The fundamental domain of tiling for the D1H1 model: Assignments of

the integers ni to the edges are shown in blue and the weights for these edges are shown in green.

3.2 Phase II: the one double-bonded one-hexagon model

This model (which we shall refer to as D1H1) contains two gauge groups U(N)1 ×U(N)2.

There are 2 bi-fundamental fields X12 and X21 as well as 2 adjoint fields transforming in

one of the two gauge groups. Without loss of generality, we take this gauge group to be

U(N)1 and denote the adjoint fields by φ1
1 and φ2

1. The superpotential is given by

W = Tr(X21[φ
1
1, φ

2
1]X12) . (3.13)

According to (2.5), we take the Chern-Simons levels to be k1 = −k2 = 1. The quiver

diagram and tiling7 are drawn in figure 5.

The toric diagram. We demonstrate two methods of constructing the toric diagram.

• The Kasteleyn matrix. We assign the integers ni to the edges according to figure 6.

From (2.12), we find that

Gauge group 1 : k1 = 1 = −n1 + n2 ,

Gauge group 2 : k2 = −1 = n1 − n2 . (3.14)

7The tiling for this theory was introduced in [21].

– 16 –



J
H
E
P
0
6
(
2
0
0
9
)
0
2
5

We choose

n2 = 1, n1 = n3 = n4 = 0 . (3.15)

We can now construct the Kasteleyn matrix for this model. Since the fundamental

domain contains only one black node and one white node, the Kasteleyn matrix is a

1 × 1 matrix and, therefore, coincides with its permanent:

K = φ1
1z

n3 + φ2
1y

−1zn4 + X21xzn1 + X12xzn2

= φ1
1 + φ2

1y
−1 + X21x + X12xz (for n2 = 1, n1 = n3 = n4 = 0) . (3.16)

The powers of x, y, z in each term of K give the coordinates of each point in the toric

diagram. We collect these points in the columns of the following GK matrix:

GK =




1 0 1 0

0 −1 0 0

0 0 1 0


 . (3.17)

• The charge matrices. From (3.16), the perfect matchings can therefore be taken as

p1 = X12, p2 = φ2
1, p3 = X21, p4 = φ1

1 . (3.18)

Since there is a one-to-one correspondence between the perfect matchings and the

fields, QF = 0. Since the number of gauge groups is G = 2, there is G−2 = 0 baryonic

charge from the D-terms and hence QD = 0. Thus, we have Qt = 0. Therefore, we

have the same G′
t as in (3.7). The toric diagram is 4 corners of a tetrahedron as in

figure 3. Thus, we have shown that the toric diagram of phase II is indeed identical

to that of phase I.

Note that the toric diagrams constructed from GK and G′
t are the same up to a transfor-

mation T =

0

B

@

1 0 1

0 −1 0

0 0 1

1

C

A
∈ GL(3, Z), where we have GK = T · G′

t.

The moduli space. Since all four columns of the Qt matrix are the same, the mesonic

symmetry of this model is SU(4) × U(1). Note that this U(1) is not the full R-symmetry,

which is actually Spin(8). However, since it assigns equal weight to all fields, it can be

identified with the scaling dimension 1/2. The four fields transform as the fundamental

representation of the SU(4). It follows that

Mmes
D1H1

= F ♭
D1H1

= C
4 , (3.19)

with the Hilbert series given by (3.9). The plethystic logarithm, of course, coincides with

that of the chessboard model and the generators are therefore

X12, X21, φ1
2, φ2

2 . (3.20)

Note that there is a one-to-one correspondence between the generators of this model and

those of Phase I.
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Figure 7. [Phase I of C × C] (i) Quiver diagram of the D1C model. (ii) Tiling of the D1C model.

4 Phases of the C × C theory

4.1 Phase I: the one double-bonded chessboard model

This model (which we shall refer to as D1C ) was first introduced in [38] as part of a

classification procedure for all models that have 2 terms in the superpotential. It has 3

gauge groups and five chiral multiplets which we will denote as X13,X23,X21,X
1
32,X

2
32,

with a superpotential:

W = Tr
(
X21X13X

1
32X23X

2
32 − X21X13X

2
32X23X

1
32

)
. (4.1)

The quiver diagram and tiling are given in figure 7. We choose the CS levels to be k1 =

1, k2 = −1, k3 = 0.

The toric diagram. We demonstrate two methods of constructing the toric diagram.

• The Kasteleyn matrix. We assign the integers ni to the edges according to figure 8.

From (2.12), we find that

Gauge group 1 : k1 = −1 = −n1 + n5 ,

Gauge group 2 : k2 = 1 = −n2 + n1 − n4 + n3 ,

Gauge group 3 : k3 = 0 = −n3 + n2 + n4 − n5 . (4.2)

We choose

n1 = 1, ni = 0 otherwise . (4.3)

We can construct the Kasteleyn matrix, which for this case is just a 1 × 1 matrix

and, therefore, coincides with its permanent:

K = X13z
n5 + X21z

n1 + X1
32x

−1zn2 + X23x
−1y−1zn3 + X2

32y
−1zn4

= X13 + X21z + X1
32x

−1 + X23x
−1y−1 + X2

32y
−1 (4.4)

(for n1 = 1 and ni = 0 otherwise) .
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Figure 8. [Phase I of C × C]. The fundamental domain of tiling for the D1C model: Assignments

of the integers ni to the edges are shown in blue and the weights for these edges are shown in green.

The powers of x, y, z in each term of K give the coordinates of each point in the toric

diagram. We collect these points in the columns of the following GK matrix:

GK =




−1 0 −1 0 0

−1 0 0 −1 0

0 0 0 0 1


 . (4.5)

• The charge matrices. From (4.4), the perfect matchings can therefore be taken as

p1 = X1
32, p2 = X2

32, p3 = X13, p4 = X23, p5 = X21 . (4.6)

Since there is a one-to-one correspondence between the quiver fields and the perfect

matchings, it follows that

QF = 0 . (4.7)

From (2.22), we find that

QD = (1, 1,−1,−1, 0) . (4.8)

Note that since the CS coefficient k3 = 0, we can immediately identify the baryonic

charges with the quiver charges under the gauge group 3, and hence arrive at (4.8).

The total charge matrix is given by

Qt = QD = (1, 1,−1,−1, 0) . (4.9)
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Figure 9. The toric diagram of the C × C theory.

We obtain the matrix Gt from (2.26), and after removing the first row, the columns

give the coordinates of points in the toric diagram:

G′
t =




1 0 1 0 0

1 0 0 1 0

0 0 0 0 1


 . (4.10)

We see that the toric diagram is merely 5 corners of a pyramid (figure 9). This is in

fact the toric diagram of C × C [21].

Note that the toric diagrams constructed from GK and G′
t are the same up to a transfor-

mation T =

0

B

@

−1 0 0

0 −1 0

0 0 1

1

C

A
∈ GL(3, Z), where we have GK = T · G′

t.

The Master space. Since the Master space is generated by the perfect matchings (sub-

ject to the relation (4.7)), it follows that

F ♭
D1C = C

5 . (4.11)

Since there are two pairs of repeated columns in the Qt matrix, the mesonic symmetry of

the theory is SU(2) × SU(2) × U(1)q × U(1)R. From figure 9, there are 5 external points

in the toric diagram. From (2.27), we thus have 5 − 4 = 1 baryonic charge. This baryonic

charge comes from the D-terms, and its assignment to the perfect matchings is given by

the QD matrix. The global symmetry of the theory is a product of mesonic and baryonic

symmetries: SU(2) × SU(2) × U(1)q × U(1)R × U(1)B . The presence of two mesonic U(1)

charges implies that there is a minimisation problem to be solved in order to determine

which linear combination of these charges gives the right R-charge in the IR (see [21] for

details of the computation). A consistent charge assignment to the perfect matchings is

given in table 2. Instead of doing this computation, we can give arguments for the correct

result as follows. The perfect matching which parametrises C is expected to be a free

field and therefore have R-charge 1/2. The remaining 4 perfect matchings are completely

symmetric and the requirement of R-charge 2 to the superpotential divides 3/2 equally

among them, resulting in R-charge of 3/8 per each. The baryonic charge is determined by
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SU(2)1 SU(2)2 U(1)q U(1)B U(1)R fugacity

p1 1 0 1 1 3/8 t3qbx1

p2 −1 0 1 1 3/8 t3qb/x1

p3 0 1 1 −1 3/8 t3qx2/b

p4 0 −1 1 −1 3/8 t3q/(bx2)

p5 0 0 −4 0 1/2 t4/q4

Table 2. Charges under the global symmetry of the C ×C theory. Here t is the fugacity associated

with the U(1)R charges. The power of t counts R-charges in the unit of 1/8, q is the fugacity

associated with the U(1)q charges, and x1, x2 are respectively the SU(2)1, SU(2)2 weights.

the charge matrix QD (4.8) which gives the linear relations between the 4 perfect matchings

and the remaining U(1) is determined by demanding that the superpotential has charge 0.

From (4.11), it is immediate to write down the Hilbert series of the Master space using the

charge assignment in table 2:

gF
♭

1 (t1, t2, x1, x2, b;D1C ) =
1

(1 − t1bx1)
(
1 − t1b

x1

) (
1 − t1x2

b

) (
1 − t1

bx2

)
(1 − t2)

, (4.12)

where t1 = t3q and t2 = t4/q4.

The mesonic moduli space. From (2.23), the mesonic moduli space is given by

Mmes
D1C = C

5//QD = C
5//(1, 1,−1,−1, 0) . (4.13)

Therefore, the Hilbert series of this space can be obtained by integrating (4.12) over the

baryonic fugacity b:

gmes
1 (t1, t2, x1, x2;D1C ) =

∮

|b|=1

db

2πib

1

(1 − t1x1b)
(
1 − t1b

x1

) (
1 − t1x2

b

)(
1 − t1

x2b

)
(1 − t2)

=
1 − t41(

1 − t21x1x2

)(
1 −

t2
1
x2

x1

)
(1 − t2)

(
1 −

t2
1
x1

x2

)(
1 −

t2
1

x1x2

)

=
1

1 − t2
×

1 − t41(
1 − t21x1x2

) (
1 −

t2
1
x2

x1

)(
1 −

t2
1
x1

x2

)(
1 −

t2
1

x1x2

)

=

∞∑

i=0

ti2

∞∑

n=0

[n;n]t2n
1 . (4.14)

It is apparent from the third equality that the mesonic moduli space is indeed C × C. The

unrefined Hilbert series is

gmes
1 (t, t, 1, 1;D1C ) =

1 + t2

(1 − t)(1 − t2)3
. (4.15)
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Figure 10. The lattice of generators of the C × C theory.

The order of the pole t = 1 indicates that the space Mmes
D1C

is 4 dimensional, as expected.

The plethystic logarithm of the Hilbert series is

PL[gmes
1 (t1, t2, x1, x2;D1C )] =

(
x1 +

1

x1

)(
x2 +

1

x2

)
t21 + t2 − t41

= [1; 1]t21 + t2 − t41 . (4.16)

The generators. We see that the generators of the mesonic moduli space are

M1
1 = X13X

1
32 = p1p3 , M2

1 = X13X
2
32 = p2p3 , M1

2 = X23X
1
32 = p1p4 ,

M2
2 = X23X

2
32 = p2p4 , X21 = p5 . (4.17)

Note that we require gauge invariance with respect to the gauge group 3, and so the indices

corresponding to the gauge group 3 are contracted. Among these generators, there is a

relation:

(
X13X

1
32

) (
X2

32X23

)
=
(
X13X

2
32

) (
X1

32X23

)
, (4.18)

or in a more concise notation:

detM = 0 . (4.19)

We can represent the generators (4.17) in a lattice (figure 10) by plotting the powers of the

weights of the characters in (4.16). Note that the lattice of generators is the dual of the

toric diagram (nodes are dual to faces and edges are dual to edges). For the C ×C theory,

the toric diagram is a pyramid (5 nodes, 8 edges and 5 faces), which is a self-dual lattice.

Therefore, the lattice of generators is the same as the toric diagram.

4.2 Phase II: the two-hexagon model

This model, studied in [20, 21] (which we shall refer to as H2) has two gauge groups and

six chiral multiplets denoted as φ1, φ2,X
1
12,X

2
12,X

1
21,X

2
21. The quiver and tiling are drawn

in figure 11. Note that in 3+1 dimensions this tiling corresponds to the C
2/Z2 ×C theory.

The superpotential is given by

W = Tr
(
φ1(X

2
12X

1
21 − X1

12X
2
21) + φ2(X

2
21X

1
12 − X1

21X
2
12)
)

. (4.20)

According to (2.5), we take the Chern-Simons levels to be k1 = −k2 = 1.
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Figure 11. [Phase II of C ×C] (i) Quiver diagram for the H2 model. (ii) Tiling for the H2 model.

The Master space. From (4.20), we see that the Master space of the H2 model [45] is

F ♭
H2

= V(X1
12X

2
21−X2

12X
1
21, (φ1−φ2)X

1
12, (φ1−φ2)X

2
12, (φ1−φ2)X

2
21, (φ1−φ2)X

1
21) . (4.21)

It is clear that F ♭
H2

is reducible and decomposes into two irreducible components as F ♭
H2

=
IrrF ♭

H2
∪ LH2

, where

IrrF ♭
H2

= V(φ1 − φ2,X
1
12X

2
21 − X2

12X
1
21) (Higgs branch) ,

LH2
= V(X1

12,X
2
12,X

1
21,X

2
21) (Coulomb branch) . (4.22)

We see that the coherent component is

IrrF ♭
H2

= C × C , (4.23)

where the C is parametrised by φ1 = φ2 and the conifold singularity C is described by the

chiral fields {X1
12,X

2
12,X

1
21,X

2
21} with the constraint X1

12X
2
21 = X2

12X
1
21. The component

LH2
= C

2 is parametrised by the fields {φ1, φ2}. These two branches meet on the complex

line parametrised by φ1 = φ2:

IrrF ♭
H2

∩ LH2
= C . (4.24)

The Kasteleyn matrix. We assign the integers ni to the edges according to figure 12.

From (2.12), we find that

Gauge group 1 : k1 = 1 = −n2 + n3 + n4 − n5 ,

Gauge group 2 : k2 = −1 = n2 − n3 − n4 + n5 . (4.25)

We choose

n3 = 1, ni = 0 otherwise . (4.26)

We can now construct the Kasteleyn matrix:

K =




w1 w2

b1 X1
21x

−1zn5 + X2
12z

n4 φ2z
n6

b2 φ1yzn1 X2
21xzn2 + X1

12z
n3


 . (4.27)
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Figure 12. [Phase II of C ×C]. The fundamental domain of tiling for the H2 model: Assignments

of the integers ni to the edges are shown in blue and the weights for these edges are shown in green.

The permanent of this matrix is

perm K = X1
21X

2
21z

n2+n5 + X2
12X

2
21xzn2+n4 + X1

21X
1
12x

−1zn3+n5

+X1
12X

2
12z

n3+n4 + φ1φ2yzn1+n6

= X1
21X

2
21 + X2

12X
2
21x + X1

21X
1
12x

−1z + X1
12X

2
12z + φ1φ2y

(for n3 = 1 and ni = 0 otherwise) . (4.28)

The perfect matchings. From (4.28), we write each perfect matching as a collection of

fields (on the coherent component) as follows:

p1 = {X1
12,X

2
12}, p2 = {X2

21,X
2
12}, p3 = {X1

12,X
1
21},

p4 = {X1
21,X

2
21}, p5 = {φ1, φ2} . (4.29)

We see below that this choice of the perfect matchings is precisely equal to the perfect

matching of Phase I. In turn, we find the parameterisation of fields in terms of per-

fect matchings:

X1
12 = p1p3, X1

21 = p2p3, X2
12 = p1p4, X2

21 = p2p4, φ1 = φ2 = p5 . (4.30)

The correspondence is summarised in the perfect matching matrix:

P =




p1 p2 p3 p4 p5

X1
12 1 0 1 0 0

X2
12 1 0 0 1 0

X1
21 0 1 1 0 0

X2
21 0 1 0 1 0

φ1 0 0 0 0 1

φ2 0 0 0 0 1




. (4.31)
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Basis vectors of of the null space of P are given in the rows of the following matrix:

QF = (1, 1,−1,−1, 0) . (4.32)

Hence, from (2.19), we see that the relations between the perfect matchings are given by

p1 + p2 − p3 − p4 = 0 . (4.33)

Since the coherent component of the Master space is generated by the perfect matchings

(subject to the relation (4.33)), it follows from (2.20) that

IrrF ♭
H2

= C
5//QF = C

5//(1, 1,−1,−1, 0) . (4.34)

The mesonic moduli space. Since the number of gauge groups is G = 2, it follows

that there is G − 2 = 0 baryonic charge from the D-terms, i.e.

QD = 0 . (4.35)

From (2.23), the mesonic moduli space is identical to the Master space and is given by

Mmes
H2

= IrrF ♭
H2

= C
5//(1, 1,−1,−1, 0) . (4.36)

Comparing this equation to (4.13), we find that the mesonic moduli space of this model is

indeed identical to that of Phase I:

Mmes
H2

= Mmes
D1C = C × C . (4.37)

The toric diagram. We demonstrate two methods of constructing the toric diagram.

• The charge matrices. From (4.32) and (4.35), we see that the total charge matrix

Qt is given by

Qt = (1, 1,−1,−1, 0) , (4.38)

which is identical to that of Phase I. Hence, the G′
t matrix coincides with that of

Phase I and is given by (4.10). Thus, we arrive at the toric diagram in figure 9. This

indeed confirms the relation (4.37).

• The Kasteleyn matrix. The powers of x, y, z in each term of (4.28) give the

coordinates of each point in the toric diagram. We collect these points in the columns

of the following GK matrix:

GK =




0 0 −1 1 0

0 0 0 0 1

1 0 1 0 0


 . (4.39)

Note that the toric diagrams constructed from the GK matrix and the G′
t matrix

(given by (4.10)) are the same up to a transformation T =

0

B

@

−1 1 0

0 0 1

1 0 0

1

C

A
∈ GL(3, Z),

where we have GK = T · G′
t.
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The baryonic charge. From figure 9, there are 5 external points in the toric diagram.

From (2.27), we thus have 5−4 = 1 baryonic charge in this model. We emphasise that this

baryonic charge does not come from the D-terms, as QD = 0. Since QF is the only non-

zero charge matrix available in the theory, from (4.36), it is natural to assign the baryonic

charge U(1)B to each perfect matchings according to the QF matrix.

The global symmetry. Since there are two pairs of repeated columns in the Qt matrix,

the mesonic symmetry of the theory is SU(2)×SU(2)×U(1)q×U(1)R. The global symmetry

of the theory is a product of mesonic and baryonic symmetries: SU(2) × SU(2) × U(1)q ×

U(1)R × U(1)B , which is identical to that of Phase I. The R-charges of perfect matchings

can be determined as follows. As discussed above, the perfect matching p5 = φ1 = φ2

parametrises C, and so it is expected to be a free field with an R-charge 1/2. The remaining

4 perfect matchings are completely symmetric and the requirement of R-charge 2 to the

superpotential divides 3/2 equally among them, resulting in R-charge of 3/8 per each. We

can therefore assign global charges to the perfect matchings as in table 2.

The Hilbert series. From the above discussion, we see that the Hilbert series of the

mesonic moduli space of this model and its plethystic logarithm are given respectively

by (4.14) and (4.16). The latter indicates that the mesonic moduli space is a complete

intersection generated by the fields

X1
12 = p1p3, X1

21 = p2p3, X2
12 = p1p4, X2

21 = p2p4, φ1 = p5, φ2 = p5 , (4.40)

subject to the relations:

X1
12X

2
21 = X2

12X
1
21 , φ1 = φ2 . (4.41)

Note that, in terms of the perfect matchings, the generators of this model are precisely the

same as those of Phase I.

4.3 Phase III: the two double-bonded one-hexagon model

This model (which we shall refer to as D2H1) was introduced in [38] as part of a classi-

fication procedure for all models that have 2 terms in the superpotential. It has 3 gauge

groups and five chiral multiplets which we will denote as X12,X21,X13,X31, φ1, with a

superpotential:

W = Tr (φ1X12X21X13X31 − φ1X13X31X12X21) . (4.42)

The quiver diagram and tiling are given in figure 13. We choose the CS levels to be

k1 = 0, k2 = 1, k3 = −1.

The toric diagram. We demonstrate two methods of constructing the toric diagram.

• The Kasteleyn matrix. We assign the integers ni to the edges according to fig-

ure 14. From (2.12), we find that

Gauge group 1 : k1 = 0 = n2 − n3 + n4 − n5 ,

Gauge group 2 : k2 = 1 = −n4 + n5 ,

Gauge group 3 : k3 = −1 = −n2 + n3 . (4.43)
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Figure 13. [Phase III of C × C] (i) Quiver diagram of the D2H1 model. (ii) Tiling of the D2H1

model.

Figure 14. [Phase III of C×C] The fundamental domain of tiling for the D2H1 model: Assignments

of the integers ni to the edges are shown in blue and the weights for these edges are shown in green.

We choose

n2 = n5 = 1, ni = 0 otherwise . (4.44)

We can construct the Kasteleyn matrix, which for this case is just a 1 × 1 matrix

and, therefore, coincides with its permanent:

K = φ1yzn1 + X13z
n2 + X31z

n3 + X12xzn4 + X21xzn5

= φ1y + X13z + X31 + X12x + X21xz (for n2 = n5 = 1 and ni = 0 otherwise) .

(4.45)
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The powers of x, y, z in each term of K give the coordinates of each point in the toric

diagram. We collect these points in the columns of the following GK matrix:

GK =




1 0 1 0 0

0 0 0 0 1

1 0 0 1 0


 . (4.46)

• The charge matrices. From (4.45), the perfect matchings can therefore be taken as

p1 = X12, p2 = X13, p3 = X21, p4 = X31, p5 = φ1 . (4.47)

We see below that this choice of perfect matchings is precisely equal to the perfect

matching of Phase I. Since there is a one-to-one correspondence between the quiver

fields and the perfect matchings, it follows that

QF = 0 . (4.48)

According to the computation from (2.22), we find that

QD = (1, 1,−1,−1, 0) . (4.49)

Note that since the CS coefficient k1 = 0, we can immediately identify the baryonic

charges with the quiver charges under the gauge group 1, and hence arrive at (4.49).

The total charge matrix is then given by

Qt = QD = (1, 1,−1,−1, 0) , (4.50)

which is identical to that of Phases I and II. Hence, the G′
t matrix is given by

G′
t =




1 0 1 0 0

1 0 0 1 0

0 0 0 0 1


 , (4.51)

which is identical to (4.10). Thus, the toric diagram for this model is given by figure 9.

Thus, we have shown that the mesonic moduli space is indeed C × C.

Note that the toric diagrams constructed from GK and G′
t are the same up to a transfor-

mation T =

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A
∈ GL(3, Z), where we have GK = T · G′

t.

The moduli space. Since the QF matrix is zero, the Master space is simply

F ♭
D2H1

= C
5 . (4.52)

From (2.23), the mesonic moduli space is given by

Mmes
D2H1

= F ♭
D2H1

//QD = C
5//(1, 1,−1,−1, 0) = C × C , (4.53)

which is the same as Phases I and II, as expected.
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Perfect matchings Generator of Phase I Generator of Phase II Generator of Phase III

p1p3 X13X
1
32 X1

12 X21X12

p2p3 X13X
2
32 X1

21 X21X13

p1p4 X23X
1
32 X2

12 X31X12

p2p4 X23X
2
32 X2

21 X21X13

p5 X21 φ1 = φ2 φ1

Table 3. A comparison between the generators of different phases of the C × C theory. In terms

of the perfect matchings, the generators of different phases are precisely the same. In Phase I, we

require gauge invariance with respect to the gauge group 3, and so the indices corresponding to the

gauge group 3 are contracted. In Phase III, we require gauge invariance with respect to the gauge

group 1, and so the indices corresponding to the gauge group 1 are contracted.

The Hilbert series. From the charge matrices, it is clear that the global symmetry of

this model is identical to that of Phase I, namely SU(2)1×SU(2)2×U(1)q×U(1)B ×U(1)R.

A consistent charge assignment to the perfect matchings is given by table 2. It is easy to see

that the Master space Hilbert series and the mesonic Hilbert series are given respectively

by (4.12) and (4.14). From the plethystic logarithm (4.16), the generators are

M1
1 = X21X12 = p1p3 , M2

1 = X21X13 = p2p3 , M1
2 = X31X12 = p1p4 ,

M2
2 = X21X13 = p2p4 , φ1 = p5 . (4.54)

Note that we require gauge invariance with respect to the gauge group 1, and so the indices

corresponding to the gauge group 1 are contracted. Among these generators, there is a

relation which can be written as

detM = 0 . (4.55)

Note that, in terms of the perfect matchings, the generators of this model are precisely the

same as those of Phase I.

4.4 A comparison between phases of the C × C theory

Here we make a comparison between phases of the C × C theory:

• Perfect matchings. The perfect matchings of different phases are exactly the same

(including the labels). They are charged in the same way under the global symmetry

according to table 2.

• Generators. In terms of the perfect matchings, the generators of different phases

are precisely the same. These are summarised in table 3.

• Quiver fields. The quiver fields of Phases I and III are the perfect matchings,

whereas the quiver fields of Phase II are bilinears in perfect matchings (except the

adjoint field which is linear in the perfect matching).
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Figure 15. [Phase I of the D3 theory] (i) Quiver diagram of the D2C model. (ii) Tiling of the D2C

model.

• Mesonic moduli space. The mesonic moduli spaces of all phases are identical;

they are C × C.

• Baryonic symmetries. The baryonic symmetries of all phases are identical. How-

ever, not all of them come from the same origin. The baryonic symmetries of Phases

I and III are induced by the D-terms, and each of them arises from one node of

the quiver. On the other hand, the baryonic symmetry of Phase II arises from the

relation between perfect matchings.

• Master space & space of perfect matchings. The Master spaces of Phases I

and III and the space of perfect matchings in Phase II are identical; they are C
5.

Each of them is a combined baryonic and mesonic moduli space for one’s own phase.

Note that for Phase II, the Master space is the mesonic moduli space.

• Conclusion. Different concepts like Master space, quiver fields, get different mean-

ing in different phases. Nevertheless, each object in one theory is mapped to the

other, giving rise to a one-to-one correspondence.

5 Phases of the D3 theory

5.1 Phase I: the two-double-bonded chessboard model

This model was studied before in [37, 38]. The quiver diagram and tiling of this model

(which we shall refer to as D2C ) are drawn in figure 15. The superpotential of this model

is given by

W = Tr (X14X42X21X12X23X31 − X14X42X23X31X12X21) . (5.1)

We choose the CS levels to be (k1, k2, k3, k4) = (1, 1,−1,−1).
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Figure 16. [Phase I of the D3 theory] The fundamental domain of tiling for the D2C model:

Assignments of the integers ni to the edges are shown in blue and the weights for these edges are

shown in green.

The toric diagram. We demonstrate two methods of constructing the toric diagram.

• The Kasteleyn matrix. We assign the integers ni to the edges according to fig-

ure 16. From (2.12), we find that

Gauge group 1 : k1 = 1 = n1 − n2 + n5 − n6 ,

Gauge group 2 : k2 = 1 = −n1 + n3 − n4 + n6 ,

Gauge group 3 : k3 = −1 = n2 − n3 ,

Gauge group 4 : k4 = −1 = n4 − n5 . (5.2)

We choose

n3 = n5 = 1, ni = 0 otherwise . (5.3)

Since the fundamental domain contains only one white node and one black node, the

Kasteleyn matrix is 1 × 1 and, therefore, coincides with its permanent:

K = X31z
n2 + X23z

n3 + X42x
−1zn4 + X14w

−1zn5 + X21x
−1y−1zn6 + X12y

−1zn1

= X31 + X23z + X42x
−1 + X14x

−1z + X21x
−1y−1 + X12y

−1

(for n3 = n5 = 1 and ni = 0) , (5.4)

where the powers of x, y, z in each term give the coordinates of each point in the toric

diagram. We collect these points in the columns of the following GK matrix:

GK =




0 −1 0 −1 −1 0

0 0 −1 −1 0 0

1 0 0 0 1 0


 . (5.5)
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Figure 17. The toric diagram of the D3 theory.

• The charge matrices. From (5.4), we can take the perfect matchings to be

p1 = X23, p2 = X42, p3 = X12, p4 = X21, p5 = X31, p6 = X14 . (5.6)

Since there is a one-to-one correspondence between the perfect matchings and the

quiver fields,

QF = 0 . (5.7)

Since the number of gauge groups is G = 4, there are G − 2 = 2 baryonic charges

coming from the D-terms. From (2.22), we find that the QD matrix is given by

QD =

(
1 0 −1 1 0 −1

1 1 0 0 −1 −1

)
. (5.8)

The total charge matrix Qt therefore coincides with QD:

Qt =

(
1 0 −1 1 0 −1

1 1 0 0 −1 −1

)
. (5.9)

Hence, the G′
t matrix is given by

G′
t =




0 1 0 1 1 0

0 0 1 1 0 0

1 0 0 0 1 0


 . (5.10)

Thus, we arrive at the toric diagram in figure 17. This is in fact the toric diagram of

D3 [21].

Note that the toric diagrams constructed from GK and G′
t are the same up to a transfor-

mation T =

0

B

@

−1 0 0

0 −1 0

0 0 1

1

C

A
∈ GL(3, Z), where we have GK = T · G′

t.
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U(1)1 U(1)2 U(1)3 U(1)R U(1)B1
U(1)B2

fugacity

p1 1 1 1 1/3 1 1 tq1q2q3b1b2

p2 −1 −1 0 1/3 0 1 tb2/(q1q2)

p3 1 0 −1 1/3 −1 0 tq1/(b1q3)

p4 −1 0 −1 1/3 1 0 tb1/(q1q3)

p5 −1 1 1 1/3 0 −1 tq3q2/(q1b2)

p6 1 −1 0 1/3 −1 −1 tq1/(q2b1b2)

Table 4. Charges under the global symmetry of the D3 theory. Here t is the fugacity of R-charge

and q1, q2, q3, b1, b2 are the respectively fugacities of the U(1)1, U(1)2, U(1)3, U(1)B1
, U(1)B2

charges.

The global symmetry. Since all columns of the Qt matrix are distinct, the symmetry

of the mesonic moduli space is expected to be U(1)3×U(1)R. The presence of four mesonic

U(1) charges implies that there is a minimisation problem to be solved in order to deter-

mine which linear combination of these charges gives the right R-charge in the IR [21].

Alternatively, we can use the symmetry argument as follows: The 6 perfect matchings

are completely symmetric and the requirement of R-charge 2 to the superpotential di-

vides 2 equally among them, resulting in R-charge of 1/3 per each. From figure 17, there

are 6 external points in the toric diagram. From (2.27), we thus have 6 − 4 = 2 bary-

onic charges, under which the perfect matchings are charged according to the QD matrix.

The global symmetry of this model is the product of mesonic and baryonic symmetries:

U(1)3×U(1)R×U(1)B1
×U(1)B2

. A consistent charge assignment to the perfect matchings

for this model is given in table 4.

The Hilbert series. Since the QF matrix is zero, the Master space is simply

F ♭
D2C = C

6 . (5.11)

The Hilbert series is given by

gF
♭

1 (t, q1, q2, q3, b1, b2;D2C ) =
1

(1 − tq1q2q3b1b2)
(
1 − tb2

q1q2

)(
1 − tq1

b1q3

) ×

×
1(

1 − tb1
q1q3

)(
1 − tq3q2

q1b2

)(
1 − tq1

q2b1b2

) . (5.12)

From (2.23), the mesonic moduli space is given by

Mmes
D2C = C

6//QD , (5.13)

Therefore, we can obtain the Hilbert series of the mesonic moduli space by integrating (5.12)

over the two baryonic fugacities b1 and b2:

gmes
1 (t, q1, q2, q3;D2C ) =

1

(2πi)2

∮

|b1|=1

db1

b1

∮

|b2|=1

db2

b2
gF

♭

1 (t, q1, q2, q3, b1, b2;D2C ) (5.14)

=
1 − t6(

1 − t2

q2

3

)(
1 − q3t2

q2

1

) (
1 − q2

1q3t2
) (

1 − t3

q1q2

2
q3

) (
1 − q1q2

2q3t3
) .
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Figure 18. The lattice of generators of the D3 theory.

The unrefined Hilbert series is given by

gmes
1 (t, 1, 1, 1;D2C ) =

1 − t6

(1 − t3)2(1 − t2)3
=

1 + t3

(1 − t3)(1 − t2)3
. (5.15)

Since the pole at t = 1 is of order 4 and the numerator is palindromic, it follows that the

mesonic moduli space is a Calabi-Yau 4-fold which, in the literature, is usually referred to

as D3. The plethystic logarithm of the mesonic Hilbert series is

PL[gmes
1 (t, q1, q2, q3;D2C )] =

t2

q2
3

+
q3t

2

q2
1

+ q2
1q3t

2 +
t3

q1q
2
2q3

+ q1q
2
2q3t

3 − t6 . (5.16)

Therefore, we see that the mesonic moduli space of this phase is a complete intersection

generated by

X23X14 = p1p6 , X42X31 = p2p5 , X12X21 = p3p4 ,

X23X12X31 = p1p3p5 , X42X21X14 = p2p4p6 , (5.17)

subject to the relation

(X23X14) (X42X31) (X12X21) = (X23X12X31) (X42X21X14) . (5.18)

We can represent these generators (5.17) in a lattice (figure 18) by plotting the powers of

the weights of the characters in (5.16). Note that the lattice of generators is the dual of

the toric diagram (nodes are dual to faces and edges are dual to edges): The toric diagram

has 6 nodes, 9 edges and 5 faces, whereas the generators form a convex polytope that has

5 nodes, 9 edges and 6 faces.

5.2 Phase II: the two-hexagon with one-diagonal model

The quiver diagram and tiling of this model (which we shall refer to as H2∂1) are discussed

in this context in [20, 21] and are given in figure 19. Note that in 3+1 dimensions this

tiling corresponds to the SPP model. The superpotential is given by

W = Tr (X32X23X31X13 − X23X32X21X12 − φ1 (X13X31 − X12X21)) . (5.19)

We choose the CS levels to be k1 = 1, k2 = −1, k3 = 0.
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Figure 19. [Phase II of the D3 theory] (i) Quiver diagram for the H2∂1 model. (ii) Tiling of the

H2∂1 model.

The Master space. From the superpotential, we find that the Master space is a reducible

variety F ♭
H2∂1

= IrrF ♭
H2∂1

∪ LH2∂1
, where

IrrF ♭
H2∂1

= V(X21X12 − X31X13, φ1 − X23X32) ,

LH2∂1
= V(X13,X31,X12,X21) . (5.20)

We see that the coherent component is

IrrF ♭
H2∂1

= C × C
2 , (5.21)

where the C
2 is parametrised by the fields {φ1,X23,X32} with the relation φ1 = X23X32

and the conifold singularity C is described by the fields {X12,X21,X13,X31} with the

relation X21X12 = X31X13. The linear component LH2∂1
= C

3 is parametrised by the

fields {φ1,X23,X32}. The intersection between these two components is

IrrF ♭
H2∂1

∩ LH2∂1
= C

2 . (5.22)

The Kasteleyn matrix. We assign the integers ni to the edges according to figure 20.

From (2.12), we find that

Gauge group 1 : k1 = 1 = n2 − n4 − n5 + n7 ,

Gauge group 2 : k2 = −1 = n3 + n4 − n6 − n7 ,

Gauge group 3 : k3 = 0 = −n2 − n3 + n5 + n6 . (5.23)

We choose

n4 = −1, ni = 0 otherwise . (5.24)
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Figure 20. [Phase II of the D3 theory] The fundamental domain of tiling for the H2∂1 model:

Assignments of the integers ni to the edges are shown in blue and the weights for these edges are

shown in green.

The Kasteleyn matrix for this theory is

K =




w1 w2

b1 X13yzn2 + X31z
n5 φ1xzn1

b2 X32z
n6 + X23y

−1zn3 X21yzn4 + X12z
n7


 . (5.25)

The permanent of this matrix is given by

perm K = X31X12z
n5+n7 + X13X12yzn2+n7 + X31X21yzn4+n5 +

+X13X21y
2zn2+n4 + φ1X32xzn1+n6 + φ1X23xy−1zn1+n3

= X31X12 + X13X12y + X31X21yz−1 + X13X21y
2z−1 + φ1X32x +

+φ1X23xy−1 (for n4 = −1 and ni = 0 otherwise) . (5.26)

The perfect matchings. From the permanent of the Kasteleyn matrix, we can write

the perfect matchings as collections of fields as follows:

p1 = {X31,X12}, p2 = {X21,X13}, p3 = {X23, φ1},

p4 = {X32, φ1}, p5 = {X31,X21}, p6 = {X12,X13} . (5.27)

In turn, we find the parameterisation of fields in terms of perfect matchings:

X31 = p1p5, X12 = p1p6, X21 = p2p5,

X13 = p2p6, X23 = p3, φ1 = p3p4, X32 = p4 . (5.28)
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This is summarised in the perfect matching matrix:

P =




p1 p2 p3 p4 p5 p6

X31 1 0 0 0 1 0

X12 1 0 0 0 0 1

X21 0 1 0 0 1 0

X13 0 1 0 0 0 1

X23 0 0 1 0 0 0

φ1 0 0 1 1 0 0

X32 0 0 0 1 0 0




. (5.29)

Basis vectors of the null space of P are given in the rows of the charge matrix:

QF = (1, 1, 0, 0 − 1,−1) . (5.30)

Hence, from (2.19), we see that the relations between the perfect matchings are given by

p1 + p2 − p5 − p6 = 0 . (5.31)

Since the coherent component of the Master space is generated by the perfect matchings

(subject to the relation (5.31)), it follows that

IrrF ♭
H2∂1

= C
6//QF = C

6//(1, 1, 0, 0 − 1,−1) . (5.32)

Since the quotient C
4//(1, 1,−1,−1) is known to be conifold (C) and C

2 is parametrised

by the remaining perfect matchings with charge 0, it follows that

IrrF ♭
H2∂1

= C × C
2 . (5.33)

The toric diagram. We demonstrate two methods of constructing the toric diagram.

• The charge matrices. Since the number of gauge groups is G = 3, there is G−2 = 1

baryonic charge, which we shall denote as U(1)B1
, coming from the D-terms. We

collect the U(1)B1
charges of the perfect matchings in the QD matrix:

QD = (1, 0,−1, 1, 0,−1) . (5.34)

Note that since the CS coefficient k3 = 0, the QD matrix (5.34) has been chosen such

that the baryonic charge of each quiver field in (5.28) coincides with the quiver charge

under gauge group 3. From (5.30) and (5.34), the total charge matrix is given by

Qt =

(
1 0 −1 1 0 −1

1 1 0 0 −1 −1

)
. (5.35)

Note that this is precisely the same as the Qt matrix (5.9) for Phase I. We thus obtain

the same matrix G′
t as for Phase I (5.10). The toric diagram is therefore given by

figure 17.
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• The Kasteleyn matrix. The powers of x, y, z in each term of (5.26) give the

coordinates of each point in the toric diagram. We collect these points in the columns

of the following GK matrix:

GK =




1 0 0 0 1 0

−1 1 1 2 0 0

0 0 −1 −1 0 0


 . (5.36)

Note that the toric diagrams constructed from GK and G′
t are the same up to a

transformation T =

0

B

@

1 0 0

−1 1 1

0 −1 0

1

C

A
∈ GL(3, Z), where we have GK = T · G′

t.

The baryonic charges. From figure 17, there are 6 external points in the toric diagram.

From (2.27), we thus have 6−4 = 2 baryonic charges. One of them comes from the D-terms

(as discussed above) and the other arises from the QF matrix. Let us donote the latter by

U(1)B2
.

The global symmetry. Since all columns of the Qt matrix are distinct, the symmetry of

the mesonic moduli space is expected to be U(1)3 ×U(1)R. It was shown in [21] that each

perfect matching has an R-charge 1/3. As discussed above, there are two baryonic charges

U(1)B1
and U(1)B2

. The global symmetry of this model is the product of mesonic and

baryonic symmetries: U(1)3 × U(1)R × U(1)B1
× U(1)B2

. The U(1)B1
and U(1)B2

charges

of the perfect matchings can be read off respectively from the QD and QF matrices. We

present a consistent assignment of the charges in table 4.

The Hilbert series. From (5.32), the Hilbert series of the coherent component can be

obtained by integrating the C
6 Hilbert series over the baryonic fugacity b2 corresponding

to the U(1)B2
charge:

g
IrrF♭

1 (t, q1, q2, q3, b1;H2∂1) =
1

2πi

∮

|b2|=1

db2

b2

1

(1 − tq1q2q3b1b2)
(
1 − tb2

q1q2

)(
1 − tq1

b1q3

) ×

×
1(

1 − tb1
q1q3

)(
1 − tq3q2

q1b2

)(
1 − tq1

q2b1b2

)

=

(
1 − t4q2

3

)
(
1 − t2

b1q2

2

)(
1 − t2q3

q2

1

)(
1 − tq1

b1q3

)(
1 − tb1

q1q3

) ×

×
1(

1 − t2q2
1q3

) (
1 − t2b1q

2
2q

2
3

) .

(5.37)

The unrefined Hilbert series is

g
IrrF♭

1 (t, 1, 1, 1, 1;H2∂1) =
1 − t4

(1 − t2)4
×

1

(1 − t)2
=

1 + t2

(1 − t)2(1 − t2)3
. (5.38)

Note that this is the Hilbert series of C×C
2 and the space IrrF ♭

H2∂1
is 5 dimensional (which is

the order of the pole at t = 1). Integrating (5.37) over the baryonic fugacity b1, we obtain
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Figure 21. [Phase III of the D3 theory] (i) Quiver diagram of the D3H1 model. (ii) Tiling of

the D3H1 model.

the same result the mesonic Hilbert series (5.14) for Phase I. Therefore, the plethystic

logarithm is given by (5.16). We see that mesonic moduli space is a complete intersection

and is generated by

X12 = p1p6 , X21 = p2p5 , φ1 = p3p4 ,

X23X31 = p1p3p5 , X13X32 = p2p4p6 , (5.39)

Note that we require gauge invariance with respect to the gauge group 3, and so the

indices corresponding to the gauge group 3 are contracted. Among these generators, there

is a relation:

(X23X31)(X13X32) = X12X21φ1 . (5.40)

Note that, in terms of the perfect matchings, the generators of this model are precisely the

same as those of Phase I.

5.3 Phase III: the three double-bonded one-hexagon model

This model (which we shall refer to as D3H1) was first introduced in [38] as part of a

classification procedure for all models that have 2 terms in the superpotential. Its quiver

diagram and tiling of this model are drawn in figure 21. The superpotential of this model

is given by

W = Tr (X13X31X14X41X12X21 − X14X41X13X31X12X21) . (5.41)

We choose the CS levels to be (k1, k2, k3, k4) = (1,−1, 1,−1).

The toric diagram. We demonstrate two methods of constructing the toric diagram.
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Figure 22. [Phase III of the D3 theory] The fundamental domain of tiling for the D3H1 model:

Assignments of the integers ni to the edges are shown in blue and the weights for these edges are

shown in green.

• The Kasteleyn matrix. We assign the integers ni to the edges according to fig-

ure 22. From (2.12), we find that

Gauge group 1 : k1 = 1 = n1 − n2 + n3 − n4 + n5 − n6 ,

Gauge group 2 : k2 = −1 = −n5 + n6 ,

Gauge group 3 : k3 = 1 = −n3 + n4 ,

Gauge group 4 : k4 = −1 = −n1 + n2 . (5.42)

We choose

n1 = n4 = n5 = 1, ni = 0 otherwise . (5.43)

Since the fundamental domain contains only one white node and one black node, the

Kasteleyn matrix is 1 × 1 and, therefore, coincides with its permanent:

K = X14z
n1 + X41z

n2 + X13xzn3 + X31xzn4 + X12y
−1zn5 + X21y

−1zn6

= X14z + X41 + X13x + X31xz + X12y
−1z + X21y

−1

(for n1 = n4 = n5 = 1 and ni = 0) , (5.44)

where the powers of x, y, z in each term give the coordinates of each point in the toric

diagram. We collect these points in the columns of the following GK matrix:

GK =




1 0 0 0 1 0

0 0 −1 −1 0 0

0 1 0 1 1 0


 . (5.45)

• The charge matrices. From (5.44), we can take the perfect matchings to be

p1 = X41, p2 = X12, p3 = X13, p4 = X31, p5 = X14, p6 = X21 . (5.46)
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Since there is a one-to-one correspondence between the perfect matchings and the

quiver fields, it follows that

QF = 0 . (5.47)

Since the number of gauge groups is G = 4, there are G − 2 = 2 baryonic charges

coming from the D-terms. From (2.22), we find that the QD matrix is given by

QD =

(
1 0 −1 1 0 −1

1 1 0 0 −1 −1

)
. (5.48)

The total charge matrix Qt therefore coincides with QD:

Qt =

(
1 0 −1 1 0 −1

1 1 0 0 −1 −1

)
, (5.49)

Note that this is exactly the same as the Qt matrix (5.9) for Phase I. Hence, the G′
t

matrix coincides with that of Phase I (5.10). Thus, we arrive at the toric diagram in

figure 17. In this way, we have shown that the mesonic moduli space is indeed D3.

Note that the toric diagrams constructed from GK and G′
t are the same up to a transfor-

mation T =

0

B

@

1 0 0

0 −1 0

0 0 1

1

C

A
∈ GL(3, Z), where we have GK = T · G′

t.

The global symmetry. Since all columns of the Qt matrix are distinct, the symmetry

of the mesonic moduli space is expected to be U(1)3 ×U(1)R. The 6 perfect matchings are

completely symmetric and the requirement of R-charge 2 to the superpotential divides 2

equally among them, resulting in R-charge of 1/3 per each. As discussed above, there are

two baryonic charges U(1)B1
and U(1)B2

, under which the perfect matchings are charged

according to the QD matrix. Thus, the global symmetry of this model is expected to be

U(1)3 × U(1)R × U(1)B1
× U(1)B2

, which is the same as in Phases I and II. We emphasise

that both baryonic charges arise from the QD matrix, as for Phase II. A consistent charge

assignment to the perfect matchings for this model is given in table 4.

The Hilbert series. Since the QF matrix is zero, the Master space is simply

F ♭
D3H1

= C
6 . (5.50)

From (2.23), the mesonic moduli space is given by

Mmes
D3H1

= C
6//QD , (5.51)

which is the same as Phase I, as expected. Therefore, the Master space Hilbert series and

the mesonic Hilbert series are the same as those of Phase I, and are given respectively

by (5.12) and (5.14). Therefore, we see that the mesonic moduli space of this phase is a

complete intersection generated by

X41X21 = p1p6 , X12X14 = p2p5 , X31X13 = p3p4 ,

X13X41X14 = p1p3p5 , X31X12X21 = p2p4p6 , (5.52)
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Perfect matchings Generator of Phase I Generator of Phase II Generator of Phase III

p1p6 X23X14 X12 X41X21

p2p5 X42X31 X21 X12X14

p3p4 X12X21 φ1 X31X13

p1p3p5 X23X12X31 X23X31 X13X41X14

p2p4p6 X42X21X14 X13X32 X31X12X21

Table 5. A comparison between the generators of different phases of the D3 theory. In terms of

the perfect matchings, the generators of different phases are precisely the same. In Phase II, we

require gauge invariance with respect to the gauge group 3, and so the indices corresponding to the

gauge group 3 are contracted.

subject to the relation

(X41X21) (X12X14) (X31X13) = (X41X13X14) (X12X31X21) . (5.53)

Note that, in terms of the perfect matchings, the generators of this model are precisely the

same as those of Phase I.

5.4 A comparison between phases of the D3 theory

Here we make a comparison between phases of the D3 theory:

• Perfect matchings. The perfect matchings of different phases are exactly the same

(including the labels). They are charged in the same way under the global symmetry

according to table 4.

• Generators. In terms of the perfect matchings, the generators of different phases

are precisely the same. These are summarised in table 5.

• Quiver fields. The quiver fields of Phases I and III are the perfect matchings,

whereas some of the quiver fields of Phase II are bilinear and some are linear in

perfect matchings.

• Mesonic moduli space. The mesonic moduli spaces of all phases are identical;

they are D3.

• Baryonic symmetries. The baryonic symmetries of all phases are identical. How-

ever, not all of them have the same origin. The baryonic symmetries for Phases I

and III arises from the D-terms, whereas the baryonic symmetry for Phase II arises

from the relation between perfect matchings as well as the D-terms (induced by one

node of the quiver).

• Master space & space of perfect matchings. The Master spaces of Phases I

and III and the space of perfect matchings of Phase II are identical; they are C
6.

However, the Master spaces of Phases I and III are combined baryonic and mesonic

moduli spaces, whereas the space of perfect matchings of Phase II is a combination

of partial baryonic moduli space and the mesonic moduli space.
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Figure 23. [Phase I of Q1,1,1/Z2] (i) Quiver diagram for the S4 model. (ii) Tiling for the S4

model.

6 Phases of the Q1,1,1/Z2 theory

This theory was introduced in [20, 21] as a modified F0 theory. In the following subsections,

we examine two phases of this theory in details.

6.1 Phase I: the four-square model

This model (which we shall refer to as S4) has 4 gauge groups and bi-fundamental fields

Xi
12, Xi

23, Xi
34 and Xi

41 (with i = 1, 2). The superpotential is given by

W = ǫijǫpq Tr(Xi
12X

p
23X

j
34X

q
41) . (6.1)

The quiver diagram and tiling are drawn in figure 23. Note that in 3+1 dimensions,

these correspond to Phase I of the F0 theory [36, 45, 46]. We choose the CS levels to be

k1 = −k2 = −k3 = k4 = 1.

The Master space. A primary decomposition indicates that the Master space of this

phase is a reducible variety and has 3 irreducible components [36, 45]:

F ♭
S4

= IrrF ♭
S4

∪ L1
S4

∪ L2
S4

, (6.2)

where

IrrF ♭
S4

= V(X1
41X

2
23 − X2

41X
1
23,X

1
34X

2
12 − X2

34X
1
12) ,

L1
S4

= V(X1
23,X

2
23,X

1
41,X

2
41) ,

L2
S4

= V(X1
34,X

2
34,X

1
12,X

2
12) . (6.3)

We see that the coherent component is the product of two conifolds:

IrrF ♭
S4

= C × C , (6.4)

and the linear components are simply copies of C
4:

Li
S4

= C
4 (for i = 1, 2) . (6.5)
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Figure 24. [Phase I of Q1,1,1/Z2] The fundamental domain of tiling for the S4 model: Assignments

of the integers ni to the edges are shown in blue and the weights for these edges are shown in green.

The Kasteleyn matrix. We assign the integers ni to the edges according to figure 24.

From (2.12), we find that

Gauge group 1 : k1 = 1 = n3 + n4 − n5 − n7 ,

Gauge group 2 : k2 = −1 = n6 + n8 − n3 − n4 ,

Gauge group 3 : k3 = −1 = n1 + n2 − n6 − n8 ,

Gauge group 4 : k4 = 1 = −n1 − n2 + n5 + n7 . (6.6)

We choose

n3 = −n1 = 1, ni = 0 otherwise . (6.7)

We can now construct the Kasteleyn matrix. The fundamental domain contains two black

nodes and two white nodes and, therefore, the Kasteleyn matrix is a 2 × 2 matrix:

K =




w1 w2

b1 X1
34z

n1 + X2
12xzn4 X1

23z
n6 + X2

41y
−1zn7

b2 X2
23z

n8 + X1
41yzn5 X2

34z
n2 + X1

12x
−1zn3


 . (6.8)

The permanent of this matrix is given by

perm K = X1
34X

2
34z

(n1+n2) + X1
12X

2
12z

(n3+n4) + X1
34X

1
12x

−1z(n1+n3) + X2
34X

2
12xz(n2+n4)

+X1
41X

1
23yz(n5+n6) + X2

41X
2
23y

−1z(n7+n8) + X1
41X

2
41z

(n5+n7) + X1
23X

2
23z

(n6+n8)

= X1
34X

2
34z

−1 + X1
12X

2
12z + X1

34X
1
12x

−1 + X2
34X

2
12x + X1

41X
1
23y + X2

41X
2
23y

−1

+X1
41X

2
41 + X1

23X
2
23 (for n3 = −n1 = 1, ni = 0 otherwise) . (6.9)
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The perfect matchings. From (6.9), we write the perfect matchings as collections of

fields as follows:

p1 = {X1
34,X

2
34}, p2 = {X1

12,X
2
12}, q1 = {X1

34,X
1
12}, q2 = {X2

34,X
2
12},

r1 = {X1
41,X

1
23}, r2 = {X2

41,X
2
23}, s1 = {X1

41,X
2
41}, s2 = {X1

23,X
2
23} . (6.10)

From (6.9), we see that the perfect matchings pi, qi, ri correspond to the external points

in the toric diagram, whereas the perfect matchings si correspond to the internal point at

the origin. In turn, we find the parameterisation of fields in terms of perfect matchings:

X1
34 = p1q1, X2

34 = p1q2, X1
12 = p2q1, X2

12 = p2q2,

X1
41 = r1s1, X1

23 = r1s2, X2
41 = r2s1, X2

23 = r2s2 . (6.11)

This is summarised in the perfect matching matrix:

P =




p1 p2 q1 q2 r1 r2 s1 s2

X1
34 1 0 1 0 0 0 0 0

X2
34 1 0 0 1 0 0 0 0

X1
12 0 1 1 0 0 0 0 0

X2
12 0 1 0 1 0 0 0 0

X1
41 0 0 0 0 1 0 1 0

X1
23 0 0 0 0 1 0 0 1

X2
41 0 0 0 0 0 1 1 0

X2
23 0 0 0 0 0 1 0 1




. (6.12)

Basis vectors of the nullspace of P are given in the rows of the charge matrix:

QF =

(
1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

)
. (6.13)

Hence, from (2.19), we see that the relations between the perfect matchings are given by

p1 + p2 − p3 − p4 = 0 ,

p5 + p6 − s1 − s2 = 0 . (6.14)

Since the coherent component IrrF ♭
S4

of the Master space is generated by the perfect match-

ings (subject to the relation (6.14)), it follows that

IrrF ♭
S4

= C
8//QF . (6.15)

The toric diagram. We demonstrate two methods of constructing the toric diagram.

• The charge matrices. Since the number of gauge groups is G = 4, there are

G − 2 = 2 baryonic charges coming from the D-terms. We collect these charges of

the perfect matchings in the QD matrix:

QD =

(
1 1 0 0 −1 −1 0 0

0 0 0 0 −1 −1 2 0

)
. (6.16)
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Figure 25. The toric diagram of the Q1,1,1/Z2 theory.

From (6.13) and (6.16), the total charge matrix is given by

Qt =




1 1 0 0 −1 −1 0 0

0 0 0 0 −1 −1 2 0

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1


 . (6.17)

We obtain the matrix Gt from (2.26), and after removing the first row, the columns

give the coordinates of points in the toric diagram:

G′
t =




0 0 0 0 −1 1 0 0

0 0 −1 1 0 0 0 0

−1 1 0 0 0 0 0 0


 . (6.18)

The toric diagram is drawn in figure 25. Observe that there is an internal point

(with multiplicity 2) in the toric diagram for this theory, whereas the toric diagram

for the Q1,1,1 theory is simply 6 corners of an octahedron without an internal point

(see appendix A of [21]). Comparing figure 25 with the 2d toric diagram of Phase

I of F0 theory [45, 46], we see that the CS levels split two of the four points at the

centre of the 2d toric diagram along the vertical axis into the two tips, and the rest

remain at the centre of the octahedron.

• The Kasteleyn matrix. The powers of x, y, z in each term of (6.9) give the coor-

dinates of each point in the toric diagram. We collect these points in the columns of

the following GK matrix:

GK =




0 0 0 0 −1 1 0 0

0 0 −1 1 0 0 0 0

−1 1 0 0 0 0 0 0


 = G′

t . (6.19)

Thus, the toric diagrams constructed from these two methods are indeed identical.

The baryonic charges. Since the toric diagram has 6 external points, this model has

precisely 6 − 4 = 2 baryonic charges which we shall denote by U(1)B1
,U(1)B2

. From the

above discussion, we see that they arise from the D-terms. Therefore, the baryonic charges

of the perfect matchings are given by the rows of the QD matrix.
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SU(2)1 SU(2)2 SU(2)3 U(1)R U(1)B1
U(1)B2

fugacity

p1 1 0 0 1/3 1 0 tb1x1

p2 −1 0 0 1/3 1 0 tb1/x1

q1 0 1 0 1/3 0 0 tx2

q2 0 −1 0 1/3 0 0 t/x2

r1 0 0 1 1/3 −1 −1 tx3/(b1b2)

r2 0 0 −1 1/3 −1 −1 t/(x3b1b2)

s1 0 0 0 0 0 2 b2
2

s2 0 0 0 0 0 0 1

s3 0 0 0 0 0 0 1

Table 6. Charges under the global symmetry of the Q1,1,1/Z2 theory. Here t is the fugacity

of R-charge, x1, x2, x3 are weights of SU(2)1, SU(2)2, SU(2)3, and b1, b2 are baryonic fugacities of

U(1)B1
, U(1)B2

. Note that the perfect matching s3 does not exist in Phase I but exists in Phase II.

The global symmetry. Since the Qt matrix has 3 pairs of repeated columns, it follows

that the mesonic symmetry of this model is SU(2)3×U(1)R. Since s1 and s2 are the perfect

matchings corresponding to internal points in the toric diagram, we assign to each of them

a zero R-charge. The remaining 6 external perfect matchings are completely symmetric

and the requirement of R-charge 2 to the superpotential divides 2 equally among them,

resulting in R-charge of 1/3 per each. The global symmetry of the theory is a product

of mesonic and baryonic symmetries: SU(2)3 × U(1)R × U(1)B1
× U(1)B2

. In table 6, we

present a consistent way of assigning charges to the perfect matchings under these global

symmetries.

The Hilbert series. From (6.15), we compute the Hilbert series of the coherent compo-

nent of the Master space by integrating the Hilbert series of C
8 over the fugacities z1 and

z2 associated with the QF charges:

g
IrrF♭

1 (t, x1, x2, x3, b1, b2;S4)

=
1

(2πi)2

∮

|z1|=1

dz1

z1

∮

|z2|=1

dz2

z2

1

(1 − tb1z1x1)
(
1 − tb1z1

x1

)(
1 − tx2

z1

) ×

×
1(

1 − t
x2z1

)(
1 − tx3z2

b1b2

)(
1 − tz2

b1b2x3

)(
1 −

b2
2

z2

)(
1 − 1

z2

)

=

(
1 − t2

b2
1

)

(
1 − tb2

b1x3

)(
1 − tb2x3

b1

)(
1 − t

b1b2x3

)(
1 − tx3

b1b2

) ×

×

(
1 − t4b2

1

)
(
1 − t2b1

x1x2

)(
1 − t2b1x2

x1

)(
1 − t2b1x1

x2

)
(1 − t2b1x1x2)

. (6.20)
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The unrefined Hilbert series of the Master space can be written as:

g
IrrF♭

1 (t, 1, 1, 1, 1, 1;S4) =
1 − t2

(1 − t)4
×

1 − t4

(1 − t2)4
. (6.21)

We see that this space is indeed the product of two conifolds. The Hilbert series of the

mesonic moduli space can be obtained by integrating (6.20) over the two baryonic fugacities

b1 and b2:

gmes
1 (t, x1, x2, x3;S4) =

1

(2πi)2

∮

|b1|=1

db1

b1

∮

|b2|=1

db2

b2
g

IrrF♭

1 (t, x1, x2, x3, b1, b2;S4)

=
P (t, x1, x2, x3)

(
1 − t6x2

1x
2
2x

2
3

)(
1 −

t6x2

1
x2

2

x2

3

)(
1 −

t6x2

1
x2

3

x2

2

)(
1 −

t6x2

2
x2

3

x2

1

) ×

×
1(

1 −
t6x2

1

x2

2
x2

3

)(
1 −

t6x2

2

x2

1
x2

3

)(
1 −

t6x2

3

x2

1
x2

2

)(
1 − t6

x2

1
x2

2
x2

3

)

=

∞∑

n=0

[2n; 2n; 2n]t6n . (6.22)

where P (t, x1, x2, x3) is a polynomial of degree 42 in t which is too long to present here.

The unrefined Hilbert series of the mesonic moduli space can be written as:

gmes
1 (t, 1, 1, 1;S4) =

1 + 23t6 + 23t12 + t18

(1 − t6)4
. (6.23)

This indicates that the mesonic moduli space is a Calabi-Yau 4-fold, as expected. The

plethystic logarithm of the mesonic Hilbert series is given by

PL[gmes
1 (t, x1, x2, x3;S4)] = [2; 2; 2]t6 − ([4; 4; 0] + [4; 0; 4] + [0; 4; 4] + [4; 0; 0] + [0; 4; 0] +

+[0; 0; 4] + [4; 2; 2] + [2; 4; 2] + [2; 2; 4] + [2; 2; 0] + [2; 0; 2] +

+[0; 2; 2] + 1)t12 + O(t18) . (6.24)

The generators. Each of the generators can be written as a product of the

perfect matchings:

pi pj qk ql rm rn s1 s2 , (6.25)

where the indices i, j, k, l,m, n run from 1 to 2. Since, for example, pipj has 3 independent

components p1p1, p1p2, p2p2, it follows that there are indeed 27 independent generators.

We can represent the generators in a lattice (figure 26) by plotting the powers of the

weights of the characters in (6.24). Note that the lattice of generators is the dual of the

toric diagram (nodes are dual to faces and edges are dual to edges): The toric diagram

has 6 nodes (external points), 12 edges and 8 faces, whereas the generators form a convex

polytope that has 8 nodes (corners of the cube), 12 edges and 6 faces.
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Figure 26. The lattice of generators of the Q1,1,1/Z2 theory.

The Z2 orbifold action. It is interesting to compare the last equality of (6.22) to the

Hilbert series of the Q1,1,1 theory, which is given by (A.7) of [21]:

gmes
1 (t, x1, x2, x3;Q

1,1,1) =

∞∑

n=0

[n;n;n]t3n . (6.26)

This indicates that the S4 model is indeed the orbifold Q1,1,1/Z2. The reason is as follows.

As discussed in [44], under the Z2 orbifold action, t → −t and we need to sum over both

sectors, with t and with −t. Therefore, starting from (6.26) and applying the Z2 action,

we are left with the terms correponding to even j and hence (6.22).

6.2 Phase II: the two-square and two-octagon model

This model, first studied in [21], (which we shall denote as S2O2) has four gauge groups

and bi-fundamental fields Xij
12, Xi

23, Xi
23′ , Xi

31 and Xi
3′1 (with i, j = 1, 2). From the

features of this quiver gauge theory, this phase is also known as a three-block model (see

for example [47]). The superpotential is given by

W = ǫijǫkl Tr(Xik
12X

l
23X

j
31) − ǫijǫkl Tr(Xki

12X
l
23′X

j
3′1) . (6.27)

The quiver diagram and tiling of this phase of the theory are given in figure 27. Note that

in 3+1 dimensions, these quiver and tiling correspond to Phase II of the F0 theory [36, 45].

We choose the CS levels to be k1 = k2 = −k3 = −k3′ = 1.

The Master space. A primary decomposition indicates that the Master space of this

phase is a reducible variety and has 4 irreducible components [36, 45]:

F ♭
S2O2

= IrrF ♭
S2O2

∪ L1
S2O2

∪ L2
S2O2

∪ L3
S2O2

, (6.28)
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Figure 27. [Phase II of Q1,1,1/Z2] (i) Quiver diagram for the S2O2 model. (ii) Tiling for the S2O2

model.

Figure 28. [Phase II of Q1,1,1/Z2] The fundamental domain of tiling for the S2O2 model: Assign-

ments of the integers ni to the edges are shown in blue and the weights for these edges are shown

in green.

where

IrrF ♭
S1O1

= V(X12
12X1

3′1 − X11
12X2

3′1,X
2
31X

1
3′1 − X1

31X
2
3′1,X

22
12X1

3′1 − X21
12X2

3′1,

X2
23X

1
23′ − X1

23X
2
23′ ,X

21
12X1

23′ − X22
12X2

23′ ,X
22
12X1

23′ − X12
12X2

23′ ,

X21
12X12

12 − X22
12X22

12 ,X1
31X

12
12 − X2

31X
11
12 ,X2

31X
2
23 − X2

3′1X
2
23′ ,

X1
31X

2
23 − X1

3′1X
2
23′ ,X

1
23X

21
12 − X2

23X
11
12 ,X1

23X
2
31 − X1

23′X
2
3′1,

X1
31X

22
12 − X2

31X
21
12 ,X1

23X
22
12 − X2

23X
12
12 ,X1

23X
1
31 − X1

23′X
1
3′1) ,

L1
S1O1

= V(X2
23′ ,X

2
3′1,X

1
3′1,X

1
23′ ,X

2
23,X

2
31,X

1
31,X

1
23) ,

L2
S1O1

= V(X2
3′1,X

1
3′1,X

11
12 ,X12

12 ,X21
12 ,X2

31,X
22
12 ,X1

31) ,

L3
S1O1

= V(X2
23′ ,X

1
23′ ,X

11
12 ,X12

12 ,X2
23,X

21
12 ,X22

12 ,X1
23) . (6.29)

We see that the linear components are simply copies of C
4:

Li
S2O2

= C
4 (for i = 1, 2, 3) . (6.30)
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The Kasteleyn matrix. We assign the integers ni to the edges according to figure 28.

From (2.12), we find that

Gauge group 1 : k1 = 1 = −n1 − n2 − n5 − n6 + n9 + n10 + n11 + n12 ,

Gauge group 2 : k2 = 1 = n3 + n4 + n7 + n8 − n9 − n10 − n11 − n12 ,

Gauge group 3 : k3 = −1 = n1 + n2 − n7 − n8 ,

Gauge group 4 : k3′ = −1 = −n3 − n4 + n5 + n6 . (6.31)

We choose

n2 = −1, n4 = 1, ni = 0 otherwise . (6.32)

We can now determine the Kasteleyn matrix. Since the fundamental domain contains 4

black nodes and 4 white nodes, the Kasteleyn matrix is a 4 × 4 matrix:

K =




w1 w2 w3 w4

b1 X2
23z

n8 X1
31z

n1 0 X21
12x−1y−1zn10

b2 X2
31z

n2 X1
23z

n7 X12
12 zn11 0

b3 0 X22
12xzn12 X1

3′1z
n5 X1

23′z
n3

b4 X11
12yzn9 0 X2

23′z
n4 X2

3′1z
n6




. (6.33)

The permanent of this matrix is given by

perm K = X1
31X

2
31X

1
3′1X

2
3′1z

(n1+n2+n5+n6) + X1
23′X

2
23′X

2
23X

1
23z

(n3+n4+n7+n8)

+X1
3′1X

1
23X

11
12X21

12x−1z(n5+n7+n9+n10) + X2
3′1X

2
23X

12
12X22

12xz(n11+n12+n6+n8)

+X1
31X

1
23′X

11
12X12

12yz(n1+n3+n9+n11) + X2
31X

2
23′X

21
12X22

12y−1z(n2+n4+n10+n12)

+X1
31X

2
31X

1
23′X

2
23′z

(n1+n2+n3+n4) + X1
3′1X

2
3′1X

2
23X

1
23z

(n5+n6+n7+n8)

+X11
12X21

12X12
12X22

12 z(n9+n10+n11+n12)

= X1
31X

2
31X

1
3′1X

2
3′1z

−1 + X1
23′X

2
23′X

2
23X

1
23z + X1

3′1X
1
23X

11
12X21

12x−1

+X2
3′1X

2
23X

12
12X22

12x + X1
31X

1
23′X

11
12X12

12y + X2
31X

2
23′X

21
12X22

12y−1

+X1
31X

2
31X

1
23′X

2
23′ + X1

3′1X
2
3′1X

2
23X

1
23 + X11

12X21
12X12

12X22
12

(for n2 = −1, n4 = 1, ni = 0 otherwise) . (6.34)
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The perfect matchings. We summarise the correspondence between the quiver fields

and the perfect matchings in the P matrix as follows:

P =




p1 p2 q1 q2 r1 r2 s1 s2 s3

X1
31 1 0 0 0 1 0 1 0 0

X2
31 1 0 0 0 0 1 1 0 0

X1
23′ 0 1 0 0 1 0 1 0 0

X2
23′ 0 1 0 0 0 1 1 0 0

X1
3′1 1 0 1 0 0 0 0 1 0

X2
3′1 1 0 0 1 0 0 0 1 0

X1
23 0 1 1 0 0 0 0 1 0

X2
23 0 1 0 1 0 0 0 1 0

X11
12 0 0 1 0 1 0 0 0 1

X21
12 0 0 1 0 0 1 0 0 1

X12
12 0 0 0 1 1 0 0 0 1

X22
12 0 0 0 1 0 1 0 0 1




. (6.35)

From (6.34), we see that the perfect matchings pi, qi, ri correspond to the external points

in the toric diagram, whereas the perfect matchings si correspond to the internal point at

the origin. Basis vectors of the null space of P are given in the rows of the charge matrix:

QF =




1 1 0 0 0 0 −1 −1 0

0 0 1 1 0 0 0 −1 −1

0 0 0 0 1 1 −1 0 −1


 . (6.36)

Hence, from (2.19), we see that the relations between the perfect matchings are given by

p1 + p2 − s1 − s2 = 0 ,

q1 + q2 − s2 − s3 = 0 ,

r1 + r2 − s1 − s3 = 0 . (6.37)

Since the coherent component of the Master space is generated by the perfect matchings

(subject to the relations (6.37)), it follows that

IrrF ♭
S2O2

= C
9//QF . (6.38)

The toric diagram. We demonstrate two methods of constructing the toric diagram.

• The charge matrices. Since the number of gauge groups is G = 4, there are

G − 2 = 2 baryonic charges coming from the D-terms. We collect these charges of

the perfect matchings in the QD matrix:

QD =

(
1 1 0 0 −1 −1 0 0 0

0 0 0 0 −1 −1 2 0 0

)
. (6.39)
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From (6.36) and (6.39), the total charge matrix is given by

Qt =




1 1 0 0 −1 −1 0 0 0

0 0 0 0 −1 −1 2 0 0

1 1 0 0 0 0 −1 −1 0

0 0 1 1 0 0 0 −1 −1

0 0 0 0 1 1 −1 0 −1




. (6.40)

We obtain the matrix Gt from (2.26), and after removing the first row, the columns

give the coordinates of points in the toric diagram:

G′
t =




0 0 0 0 −1 1 0 0 0

0 0 −1 1 0 0 0 0 0

−1 1 0 0 0 0 0 0 0


 . (6.41)

We see that the toric diagram is given by figure 25, with three degenerate internal

points at the centre. Comparing figure 25 with the 2d toric diagram of Phase II of

F0 theory [45, 46], we see that the CS levels split two of the five points at the centre

of the 2d toric diagram along the vertical axis into the two tips, and the rest remain

at the centre of the octahedron.

• The Kasteleyn matrix. The powers of x, y, z in each term of the permanent of the

Kasteleyn matrix give the coordinates of each point in the toric diagram. We collect

these points in the columns of the following GK matrix:

GK =




0 0 0 0 −1 1 0 0 0

0 0 −1 1 0 0 0 0 0

−1 1 0 0 0 0 0 0 0


 = G′

t . (6.42)

Thus, the toric diagrams constructed from these two methods are indeed identical.

The baryonic charges. Since the toric diagram has 6 external points, this model has

precisely 6 − 4 = 2 baryonic charges which we shall denote by U(1)B1
,U(1)B2

. From the

above discussion, we see that they arise from the D-terms. Therefore, the baryonic charges

of the perfect matchings are given by the rows of the QD matrix.

The global symmetry. From the Qt matrix, the charge assignment breaks the symme-

try of the space of perfect matchings to SU(2)3 × U(1)R. Since s1, s2, s3 are the perfect

matchings corresponding to internal points in the toric diagram, we assign to each of them

a zero R-charge. The remaining 6 external perfect matchings are completely symmetric

and the requirement of R-charge 2 to the superpotential divides 2 equally among them,

resulting in R-charge of 1/3 per each. The global symmetry of the theory is a product of

mesonic and baryonic symmetries: SU(2)3 ×U(1)R ×U(1)B1
×U(1)B2

. In table 6, we give

a consistent charge assignment for the perfect matchings under the global symmetries.
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The Hilbert series. From (6.38), we compute the Hilbert series of the coherent compo-

nent of the Master space by integrating the Hilbert series of C
9 over the fugacities z1, z2, z3

associated with the QF charges:

g
IrrF♭

1 (t, x1, x2, x3, b1, b2;S2O2)

=
1

(2πi)3

∮

|z1|=1

dz1

z1

∮

|z2|=1

dz2

z2

∮

|z3|=1

dz3

z3

1

(1 − tb1z1x1)
(
1 − tb1z1

x1

) ×

×
1

(1 − tx2z2)
(
1 − tz2

x2

)(
1 − tx3z3

b1b2

)(
1 − tz3

x3b1b2

)(
1 −

b2
2

z1z3

) ×

×
1(

1 − 1
z1z2

)(
1 − 1

z2z3

) . (6.43)

The unrefined Hilbert series of the Master space can be written as:

g
IrrF♭

1 (t, 1, 1, 1, 1, 1;S2O2) =
1 + 6t2 + 6t4 + t6

(1 − t2)6
. (6.44)

Integrating the Hilbert series of the Master space over the baryonic fugacities gives the

Hilbert series of the mesonic moduli space:

gmes
1 (t, x1, x2, x3;S2O2) =

1

(2πi)2

∮

|b1|=1

db1

b1

∮

|b2|=1

db2

b2
g

IrrF♭

1 (t, x1, x2, x3, b1, b2;S2O2)

=
P (t, x1, x2, x3)

(
1 − t6x2

1x
2
2x

2
3

) (
1 −

t6x2

1
x2

2

x2

3

)(
1 −

t6x2

1
x2

3

x2

2

)(
1 −

t6x2

2
x2

3

x2

1

) ×

×
1(

1 −
t6x2

1

x2

2
x2

3

)(
1 −

t6x2

2

x2

1
x2

3

)(
1 −

t6x2

3

x2

1
x2

2

)(
1 − t6

x2

1
x2

2
x2

3

)

=

∞∑

j=0

[2j; 2j; 2j]t6j . (6.45)

where P (t, x1, x2, x3) is a polynomial of order 42 in t mentioned in (6.22). This precisely

identical to the Hilbert series (6.22) of the mesonic moduli space of Phase I .

The generators. Each of the generators can be written as a product of the

perfect matchings:

pi pj qk ql rm rn s1 s2 s3 , (6.46)

where the indices i, j, k, l,m, n run from 1 to 2. Since, for example, pipj has 3 independent

components p1p1, p1p2, p2p2, it follows that there are indeed 27 independent generators.

Note that the generators of this model are identical to those of Phase I, apart from a factor

of the internal perfect matching s3.
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Discussion. The toric diagram and the Hilbert series (6.45) confirms that the mesonic

moduli space of this model is indeed Q1,1,1/Z2. However, from (6.21) and (6.44), we see

that the Master spaces of the two phases are different. Since the mesonic and baryonic

symmetries of the two phases are identical, it remains an open question why the Master

spaces, which are expected to be the combined baryonic and mesonic moduli space, of the

two phases are different. This situation was also encountered in [36], where two phases

of the F0 were studied. There, it was found that the Hilbert series of the two phases are

different unless the fugacities associated with the anomalous charges are set to 1.
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A Permanent of the Kasteleyn matrix and coordinates of the points in

the toric diagram

In this appendix, we show that the permanent of the Kasteleyn matrix indeed gives rise

to coordinates of the points in the toric diagram. Given a Kasteleyn matrix K(x, y, z), its

permanent is given by (2.17):

perm K =
c∑

α=1

pαxuαyvαzwα , (A.1)

where uα, vα, wα are given by

uα =
∑

ei∈Ex

signx(ei)Piα , vα =
∑

ei∈Ey

signy(ei)Piα , wα =
∑

i niPiα , (A.2)

where Ex and Ey denote the set of edges crossing the horizontal and vertical boundary of

the fundamental domain, and signl(ei) denotes the sign arising from the edge ei crossing

the fundamental domain in the l direction. The powers of x, y, z in (A.1) are collected in

each column of the GK matrix as follows:

GK =




u1 u2 u3 . . . uc

v1 v2 v3 . . . vc

w1 w2 w3 . . . wc


 . (A.3)
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We would like to prove that the rows of GK are elements of the nullspace of Qt. It

follows immediately from the forward algorithm that (uα, vα, wα) are coordinates of the

points in the toric diagram. From the definition (2.25) of the Qt matrix, it is equivalent to

proving that the rows of GK are in the nullspace of both QF and QD:

QF · Gt
K = 0 , QD · Gt

K = 0 . (A.4)

Let us first prove the first equation of (A.4). From (A.2), we see that u, v,w are

linear combinations of the rows of the matrix P . According to (2.19), the latter live in

the nullspace of QF . Therefore, all of the three rows of GK are indeed elements of the

nullspace of QF . Thus, we have proven the first equation of (A.4).

Now let us prove the second equation of (A.4). Using the definition (2.22) of the QD

matrix and (A.2), we find that

[QD · (u1 u2 . . . uc)
t]l =

c∑

α=1

∑

ei∈Ex

signx(ei) [ker(C) · Q̃]lα(P t)αi

=

G∑

a=1

∑

ei∈Ex

signx(ei)[ker(C)]la (d)ai , (A.5)

where we have used (2.21) in the last equality. At this point, we follow the line of arguments

in [48]. Every face of the tiling is crossed by the x boundary of the fundamental domain over

an even number of edges. Every edge which gets intersected by the x boundary transforms

either in the fundamental or in the antifundamental representation of the gauge group

associated with the face a. Let us consider two edges, ei, ej ∈ Ex, of the face a. Then

we have that dai/daj = 1 or −1 if they are separated by an odd or even number of edges

respectively. On the other hand, signx(ei)/signx(ej) = 1 or −1 if the edges are separated

by an even or odd number of edges. Hence,

signx(ei) dai

signx(ej) daj
= −1 . (A.6)

Therefore, from (A.5), we find that

[QD · (u1 u2 . . . uc)
t]l =

G∑

a=1

[ker(C)]la



∑

ei∈Ex

signx(ei) dai


 = 0 . (A.7)

Similarly, we have

[QD · (v1 v2 . . . vc)
t]l =

G∑

a=1

[ker(C)]la



∑

ei∈Ex

signy(ei) dai


 = 0 . (A.8)
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Thus, the first and second rows of GK are elements of the nullspace of QD. Let us now

consider the third row:

[QD · (w1 w2 . . . wc)
t]l =

c∑

α=1

∑

i

ni

[
ker(C) · Q̃

]
lα

(P t)αi

=

G∑

a=1

∑

i

ni[ker(C)]la dai

=
G∑

a=1

[ker(C)]laka

= 0 . (A.9)

where we have used (2.12) in the third equality and the definition (2.9) of C in the last

equality. Therefore, the third row of GK is an element of the nullspace of QD. Hence, we

have proven the second equation of (A.4). Thus, we have shown that the rows of GK are

elements of the nullspace of Qt.
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